An Efficient Machine Learning-Based Fall Detection Algorithm using Local Binary Features

M. Saleh, R. Bouquin-Jeannès
{"title":"An Efficient Machine Learning-Based Fall Detection Algorithm using Local Binary Features","authors":"M. Saleh, R. Bouquin-Jeannès","doi":"10.23919/EUSIPCO.2018.8553340","DOIUrl":null,"url":null,"abstract":"According to the world health organization, millions of elderly suffer from falls every year. These falls are one of the major causes of death worldwide. As a rapid medical intervention would considerably decrease the serious consequences of such falls, automatic fall detection systems for elderly has become a necessity. In this paper, an efficient machine learning-based fall detection algorithm is proposed. Thanks to the proposed local binary features, this algorithm shows a high accuracy exceeding 99% when tested on a large dataset. In addition, it enjoys an attractive property that the computational cost of decision-making is independent from the complexity of the trained machine. Thus, the proposed algorithm overcomes a critical challenge of designing accurate yet low-cost solutions for wearable fall detectors. The aforementioned property enables implementing autonomous, low-power consumption wearable fall detectors.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

According to the world health organization, millions of elderly suffer from falls every year. These falls are one of the major causes of death worldwide. As a rapid medical intervention would considerably decrease the serious consequences of such falls, automatic fall detection systems for elderly has become a necessity. In this paper, an efficient machine learning-based fall detection algorithm is proposed. Thanks to the proposed local binary features, this algorithm shows a high accuracy exceeding 99% when tested on a large dataset. In addition, it enjoys an attractive property that the computational cost of decision-making is independent from the complexity of the trained machine. Thus, the proposed algorithm overcomes a critical challenge of designing accurate yet low-cost solutions for wearable fall detectors. The aforementioned property enables implementing autonomous, low-power consumption wearable fall detectors.
基于局部二值特征的高效机器学习跌倒检测算法
据世界卫生组织称,每年有数百万老年人跌倒。这些跌落是全世界死亡的主要原因之一。由于快速的医疗干预将大大减少这类跌倒的严重后果,老年人跌倒自动检测系统已成为必要。本文提出了一种高效的基于机器学习的跌倒检测算法。由于提出的局部二值特征,该算法在大型数据集上的准确率超过99%。此外,它还具有决策的计算成本与训练机器的复杂性无关的特点。因此,该算法克服了为可穿戴式跌落探测器设计精确且低成本解决方案的关键挑战。上述特性使实现自主、低功耗的可穿戴跌倒探测器成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信