Proof of the Main Result

R. Schwartz
{"title":"Proof of the Main Result","authors":"R. Schwartz","doi":"10.23943/princeton/9780691181387.003.0013","DOIUrl":null,"url":null,"abstract":"This chapter puts together the ingredients from the last three chapters—the Segment Lemma, the Horizontal Lemma, and the Vertical Lemma—and proves Theorem 8.2. The three technical lemmas do not mention the partition of the space X at all, but they do give a lot of control over how the nature of the particles tracked by points in the plaid grid Π‎ influences the image of such grid points under the classifying map Φ‎. What remains is to compare the three results above to the partition and determine whether everything matches. The remainder of the chapter is organized as follows. Section 12.2 carries out the program to show that these containers are each a union of two prisms. Section 12.3 discusses some extra symmetry of the partition. Section 12.5 compares the prism containers in the vertical case to the partition of X and deduces that Theorem 8.2 is true for the vertical unit integer segments. Section 12.4 compares the prism containers in the vertical case to the partition of X and deduces that Theorem 8.2 is true for the horizontal unit integer segments. The two results together complete the proof.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691181387.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter puts together the ingredients from the last three chapters—the Segment Lemma, the Horizontal Lemma, and the Vertical Lemma—and proves Theorem 8.2. The three technical lemmas do not mention the partition of the space X at all, but they do give a lot of control over how the nature of the particles tracked by points in the plaid grid Π‎ influences the image of such grid points under the classifying map Φ‎. What remains is to compare the three results above to the partition and determine whether everything matches. The remainder of the chapter is organized as follows. Section 12.2 carries out the program to show that these containers are each a union of two prisms. Section 12.3 discusses some extra symmetry of the partition. Section 12.5 compares the prism containers in the vertical case to the partition of X and deduces that Theorem 8.2 is true for the vertical unit integer segments. Section 12.4 compares the prism containers in the vertical case to the partition of X and deduces that Theorem 8.2 is true for the horizontal unit integer segments. The two results together complete the proof.
主要结果的证明
本章综合了前三章的内容——分段引理、水平引理和垂直引理——并证明了定理8.2。这三个技术引理根本没有提到空间X的划分,但它们确实对格纹网格Π]中点所跟踪的粒子的性质如何影响分类地图Φ]下这些网格点的图像提供了很多控制。剩下的是将上面的三个结果与分区进行比较,并确定是否所有内容都匹配。本章的其余部分组织如下。第12.2节执行程序来说明这些容器都是两个棱镜的并集。第12.3节讨论了分区的一些额外对称性。第12.5节将垂直情况下的棱镜容器与X的分割进行比较,并推导出定理8.2对于垂直单位整数段成立。第12.4节将垂直情况下的棱镜容器与X的分割进行比较,推导出定理8.2对于水平单位整数段成立。这两个结果一起完成了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信