Conceptual Approach to Clustering in the Study of Gene Expression

M. Bogatyrev, K. Samodurov
{"title":"Conceptual Approach to Clustering in the Study of Gene Expression","authors":"M. Bogatyrev, K. Samodurov","doi":"10.17537/ICMBB18.81","DOIUrl":null,"url":null,"abstract":"The work contains an overview of clustering methods used in the study of gene expression and new results of application of Formal Concepts Analysis to clustering data extracted from the public functional genomics data repository GEO. Methods of Formal Concept Analysis allow clustering of multidimensional data under the single condition of partial ordering of such data sets. As a result, clusters are separate sublattices in the concept lattice, where each sublattice contains hierarchically related formal concepts. This solution of the clustering problem allows deep investigating both mutual influences of genes and their influence on other data obtained in experiments on gene expression. The paper describes a new information technology developed for the implementation of the proposed approach. The technology uses modern solutions in the field of Big Data processing, it has functions for communication with external data sources and other information systems. Preliminary results of the application of this technology to three-dimensional gene expression data obtained from the GEO system are presented.","PeriodicalId":168323,"journal":{"name":"Proceedings of the International Conference \"Mathematical Biology and Bioinformatics\"","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference \"Mathematical Biology and Bioinformatics\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/ICMBB18.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The work contains an overview of clustering methods used in the study of gene expression and new results of application of Formal Concepts Analysis to clustering data extracted from the public functional genomics data repository GEO. Methods of Formal Concept Analysis allow clustering of multidimensional data under the single condition of partial ordering of such data sets. As a result, clusters are separate sublattices in the concept lattice, where each sublattice contains hierarchically related formal concepts. This solution of the clustering problem allows deep investigating both mutual influences of genes and their influence on other data obtained in experiments on gene expression. The paper describes a new information technology developed for the implementation of the proposed approach. The technology uses modern solutions in the field of Big Data processing, it has functions for communication with external data sources and other information systems. Preliminary results of the application of this technology to three-dimensional gene expression data obtained from the GEO system are presented.
基因表达研究中的聚类概念方法
该作品概述了基因表达研究中使用的聚类方法,以及将形式概念分析应用于从公共功能基因组学数据存储库 GEO 中提取的数据聚类的新成果。形式概念分析方法允许在对此类数据集进行部分排序的单一条件下对多维数据进行聚类。因此,聚类是概念网格中的独立子网格,每个子网格都包含层次相关的形式概念。这种聚类问题的解决方案可以深入研究基因之间的相互影响以及基因表达实验中获得的其他数据对基因的影响。本文介绍了为实施所建议的方法而开发的一种新信息技术。该技术采用了大数据处理领域的现代解决方案,具有与外部数据源和其他信息系统通信的功能。本文介绍了将该技术应用于从 GEO 系统获取的三维基因表达数据的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信