Daniel Planelles, E. Hortal, E. Iáñez, Á. Costa, A. Úbeda, J. Azorín
{"title":"Preliminary Study to Detect Gait Initiation Intention Through a BCI System","authors":"Daniel Planelles, E. Hortal, E. Iáñez, Á. Costa, A. Úbeda, J. Azorín","doi":"10.5220/0005167800610066","DOIUrl":null,"url":null,"abstract":"In this paper is presented an experiment designed to detect the will to perform several steps forward (as walking onset) before it occurs using the electroencephalographic (EEG) signals collected from the scalp. The preliminary results from five users have been presented. In order to improve the quality of the signals acquired some different spatial filters are applied and compared. In the future, the improved Brain-Computer Interface of this paper will be used as part of the control system of an exoskeleton attached to the lower limb of people with incomplete and complete spinal cord injury to initiate their gait cycle.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005167800610066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper is presented an experiment designed to detect the will to perform several steps forward (as walking onset) before it occurs using the electroencephalographic (EEG) signals collected from the scalp. The preliminary results from five users have been presented. In order to improve the quality of the signals acquired some different spatial filters are applied and compared. In the future, the improved Brain-Computer Interface of this paper will be used as part of the control system of an exoskeleton attached to the lower limb of people with incomplete and complete spinal cord injury to initiate their gait cycle.