Autonomic Resource Management Handling Delayed Configuration Effects

Oliver Niehörster, A. Brinkmann
{"title":"Autonomic Resource Management Handling Delayed Configuration Effects","authors":"Oliver Niehörster, A. Brinkmann","doi":"10.1109/CloudCom.2011.28","DOIUrl":null,"url":null,"abstract":"Today, cloud providers offer customers access to complex applications running on virtualized hardware. Nevertheless, big virtualized data centers become stochastic environments with performance fluctuations. The growing number of cloud services makes a manual steering impossible. An automatism on the provider side is needed. In this paper, we present a software solution located in the Software as a Service layer with autonomous agents that handle user requests. The agents allocate resources and configure applications to compensate performance fluctuations. They use a combination of Support Vector Machines and Model-Predictive Control to predict and plan future configurations. This allows them to handle configuration delays for requesting new virtual machines and to guarantee time-dependent service level objectives (SLOs). We evaluated our approach on a real cloud system with a high-performance software and a three-tier e-commerce application. The experiments show that the agents accurately configure the application and plan horizontal scalings to enforce SLO fulfillments even in the presence of noise.","PeriodicalId":427190,"journal":{"name":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2011.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Today, cloud providers offer customers access to complex applications running on virtualized hardware. Nevertheless, big virtualized data centers become stochastic environments with performance fluctuations. The growing number of cloud services makes a manual steering impossible. An automatism on the provider side is needed. In this paper, we present a software solution located in the Software as a Service layer with autonomous agents that handle user requests. The agents allocate resources and configure applications to compensate performance fluctuations. They use a combination of Support Vector Machines and Model-Predictive Control to predict and plan future configurations. This allows them to handle configuration delays for requesting new virtual machines and to guarantee time-dependent service level objectives (SLOs). We evaluated our approach on a real cloud system with a high-performance software and a three-tier e-commerce application. The experiments show that the agents accurately configure the application and plan horizontal scalings to enforce SLO fulfillments even in the presence of noise.
自主资源管理处理延迟配置效果
今天,云提供商为客户提供访问运行在虚拟化硬件上的复杂应用程序的权限。然而,大型虚拟化数据中心成为具有性能波动的随机环境。越来越多的云服务使得手动操作变得不可能。需要在提供者端实现自动化。在本文中,我们提出了一个软件解决方案,它位于软件即服务层,具有处理用户请求的自治代理。代理分配资源并配置应用程序以补偿性能波动。他们结合使用支持向量机和模型预测控制来预测和规划未来的配置。这允许他们处理请求新虚拟机的配置延迟,并保证与时间相关的服务水平目标(slo)。我们在一个具有高性能软件和三层电子商务应用程序的真实云系统上评估了我们的方法。实验表明,即使在存在噪声的情况下,智能体也能准确地配置应用程序并计划水平缩放以强制实现SLO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信