Probabilistic analysis of incremental light bundle adjustment

Vadim Indelman, Richard Roberts, F. Dellaert
{"title":"Probabilistic analysis of incremental light bundle adjustment","authors":"Vadim Indelman, Richard Roberts, F. Dellaert","doi":"10.1109/WORV.2013.6521942","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic analysis of the recently introduced incremental light bundle adjustment method (iLBA) [6]. In iLBA, the observed 3D points are algebraically eliminated, resulting in a cost function with only the camera poses as variables, and an incremental smoothing technique is applied for efficiently processing incoming images. While we have already showed that compared to conventional bundle adjustment (BA), iLBA yields a significant improvement in computational complexity with similar levels of accuracy, the probabilistic properties of iLBA have not been analyzed thus far. In this paper we consider the probability distribution that corresponds to the iLBA cost function, and analyze how well it represents the true density of the camera poses given the image measurements. The latter can be exactly calculated in bundle adjustment (BA) by marginalizing out the 3D points from the joint distribution of camera poses and 3D points. We present a theoretical analysis of the differences in the way that LBA and BA use measurement information. Using indoor and outdoor datasets we show that the first two moments of the iLBA and the true probability distributions are very similar in practice.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a probabilistic analysis of the recently introduced incremental light bundle adjustment method (iLBA) [6]. In iLBA, the observed 3D points are algebraically eliminated, resulting in a cost function with only the camera poses as variables, and an incremental smoothing technique is applied for efficiently processing incoming images. While we have already showed that compared to conventional bundle adjustment (BA), iLBA yields a significant improvement in computational complexity with similar levels of accuracy, the probabilistic properties of iLBA have not been analyzed thus far. In this paper we consider the probability distribution that corresponds to the iLBA cost function, and analyze how well it represents the true density of the camera poses given the image measurements. The latter can be exactly calculated in bundle adjustment (BA) by marginalizing out the 3D points from the joint distribution of camera poses and 3D points. We present a theoretical analysis of the differences in the way that LBA and BA use measurement information. Using indoor and outdoor datasets we show that the first two moments of the iLBA and the true probability distributions are very similar in practice.
增量光束调整的概率分析
本文对最近提出的增量光束调整方法(iLBA)[6]进行了概率分析。在iLBA中,对观察到的3D点进行代数消除,得到一个仅以相机姿态为变量的代价函数,并采用增量平滑技术对传入图像进行有效处理。虽然我们已经表明,与传统的束调整(BA)相比,iLBA在计算复杂性方面有了显着提高,并且具有相似的精度水平,但iLBA的概率特性迄今尚未得到分析。在本文中,我们考虑对应于iLBA成本函数的概率分布,并分析它在给定图像测量的情况下如何很好地表示相机姿势的真实密度。后者可以在束平差(BA)中通过从相机姿态和3D点的联合分布中剔除3D点来精确计算。我们对LBA和BA使用测量信息的方式的差异进行了理论分析。使用室内和室外数据集,我们表明在实践中,iLBA的前两个矩和真实概率分布非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信