Bounding methods for facilities location algorithms

P. D. Dowling, R. Love
{"title":"Bounding methods for facilities location algorithms","authors":"P. D. Dowling, R. Love","doi":"10.1002/NAV.3800330420","DOIUrl":null,"url":null,"abstract":"Single- and multi-facility location problems are often solved with iterative computational procedures. Although these procedures have proven to converage, in practice it is desirable to be able to compute a lower bound on the objective function at each iteration. This enables the user to stop the iterative process when the objective function is within a prespecified tolerance of the optimum value. In this article we generalize a new bounding method to include multi-facility problems with lp distances. A proof is given that for Euclidean distance problems the new bounding procedure is superior to two other known methods. Numerical results are given for the three methods.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"63 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Single- and multi-facility location problems are often solved with iterative computational procedures. Although these procedures have proven to converage, in practice it is desirable to be able to compute a lower bound on the objective function at each iteration. This enables the user to stop the iterative process when the objective function is within a prespecified tolerance of the optimum value. In this article we generalize a new bounding method to include multi-facility problems with lp distances. A proof is given that for Euclidean distance problems the new bounding procedure is superior to two other known methods. Numerical results are given for the three methods.
设施定位算法的边界方法
单设施和多设施选址问题通常采用迭代计算方法求解。虽然这些过程已被证明是收敛的,但在实践中,希望能够在每次迭代中计算目标函数的下界。这使用户能够停止迭代过程时,目标函数是在一个预先规定的公差的最优值。在本文中,我们推广了一种新的包含lp距离的多设施问题的边界方法。证明了对于欧氏距离问题,新的边界法优于其他两种已知的边界法。给出了三种方法的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信