{"title":"Bounding methods for facilities location algorithms","authors":"P. D. Dowling, R. Love","doi":"10.1002/NAV.3800330420","DOIUrl":null,"url":null,"abstract":"Single- and multi-facility location problems are often solved with iterative computational procedures. Although these procedures have proven to converage, in practice it is desirable to be able to compute a lower bound on the objective function at each iteration. This enables the user to stop the iterative process when the objective function is within a prespecified tolerance of the optimum value. In this article we generalize a new bounding method to include multi-facility problems with lp distances. A proof is given that for Euclidean distance problems the new bounding procedure is superior to two other known methods. Numerical results are given for the three methods.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"63 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800330420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Single- and multi-facility location problems are often solved with iterative computational procedures. Although these procedures have proven to converage, in practice it is desirable to be able to compute a lower bound on the objective function at each iteration. This enables the user to stop the iterative process when the objective function is within a prespecified tolerance of the optimum value. In this article we generalize a new bounding method to include multi-facility problems with lp distances. A proof is given that for Euclidean distance problems the new bounding procedure is superior to two other known methods. Numerical results are given for the three methods.