A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

J. R. Romero, J. A. Carballido, I. Garbus, V. Echenique, I. Ponzoni
{"title":"A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching","authors":"J. R. Romero, J. A. Carballido, I. Garbus, V. Echenique, I. Ponzoni","doi":"10.4137/EBO.S40138","DOIUrl":null,"url":null,"abstract":"The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.","PeriodicalId":136690,"journal":{"name":"Evolutionary Bioinformatics Online","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/EBO.S40138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.
使用模式匹配检测重复嵌套基序的生物信息学方法
基因组序列中嵌套基序的识别是一个复杂的计算问题。这些模式的检测对于发现转座因子(TE)插入、不完全逆转录本、缺失和/或突变非常重要。在本研究中,基于模组对的穷举搜索和组合模组分析,设计了一种全新的模组检测策略。这些图案可分为三种类型:图案中的图案、图案之间的图案和大尺寸的图案。本研究中使用的方法,应用于植物物种Aegilops tauschii和Oryza sativa的基因组序列,表明可以通过检测这三种类型的模式来识别假定的巢式te。结果通过BLAST比对验证,揭示了新方法(称为Mamushka)的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信