Mads Frederik Madsen, Mikkel Gaub, Malthe Ettrup Kirkbro, S. Debois
{"title":"Transforming Byzantine Faults using a Trusted Execution Environment","authors":"Mads Frederik Madsen, Mikkel Gaub, Malthe Ettrup Kirkbro, S. Debois","doi":"10.1109/EDCC.2019.00022","DOIUrl":null,"url":null,"abstract":"We present a general transformation of general omission resilient distributed algorithms into byzantine fault ones. The transformation uses the guarantees of integrity and confidentiality provided by a trusted execution environment to implement a byzantine failure detector. Correct processes in a transformed algorithm will operate as if byzantine faulty processes have crashed or their messages were dropped. The transformation adds no additional messages between processes, except for a pre-compute step, and the increase in states of the algorithm is linearly bounded: it is a 1-round, n=f+1 translation, making no assumptions of determinism.","PeriodicalId":334498,"journal":{"name":"2019 15th European Dependable Computing Conference (EDCC)","volume":"107 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present a general transformation of general omission resilient distributed algorithms into byzantine fault ones. The transformation uses the guarantees of integrity and confidentiality provided by a trusted execution environment to implement a byzantine failure detector. Correct processes in a transformed algorithm will operate as if byzantine faulty processes have crashed or their messages were dropped. The transformation adds no additional messages between processes, except for a pre-compute step, and the increase in states of the algorithm is linearly bounded: it is a 1-round, n=f+1 translation, making no assumptions of determinism.