{"title":"Skin Cancer Classification using Convolutional Neural Network with Autoregressive Integrated Moving Average","authors":"Chee Ka Chin, Dayang Azra binti Awang Mat, Abdulrazak Yahya Saleh","doi":"10.1145/3467691.3467693","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) and Deep Neural Network (DNN) based Computer-aided decision (CAD) systems show the effective implementation in solving skin cancer classification problem. However, ML approach unable to get the deep features from network flow which causes the low accuracy performance and the DNN model has the complex network with an enormous number of parameters that resulting in the limited classification accuracy. In this paper, the hybrid Convolutional Neural Network algorithm and Autoregressive Integrated Moving Average model (CNN-ARIMA) have been proposed to classify three different types of skin cancer. The proposed CNN-ARIMA able to classify skin cancer image successfully and achieved test accuracy, average sensitivity, average specificity, average precision and AUC of 96.00%, 96.02%, 97.98%, 96.13% and 0.995, respectively which outperformed the state-of-art methods.","PeriodicalId":159222,"journal":{"name":"Proceedings of the 2021 4th International Conference on Robot Systems and Applications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th International Conference on Robot Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3467691.3467693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Machine Learning (ML) and Deep Neural Network (DNN) based Computer-aided decision (CAD) systems show the effective implementation in solving skin cancer classification problem. However, ML approach unable to get the deep features from network flow which causes the low accuracy performance and the DNN model has the complex network with an enormous number of parameters that resulting in the limited classification accuracy. In this paper, the hybrid Convolutional Neural Network algorithm and Autoregressive Integrated Moving Average model (CNN-ARIMA) have been proposed to classify three different types of skin cancer. The proposed CNN-ARIMA able to classify skin cancer image successfully and achieved test accuracy, average sensitivity, average specificity, average precision and AUC of 96.00%, 96.02%, 97.98%, 96.13% and 0.995, respectively which outperformed the state-of-art methods.