{"title":"Distributed fuzzy-neural state-space predictive control","authors":"Y. Todorov, M. Terziyska, Luybka Doukovska","doi":"10.1109/PC.2015.7169934","DOIUrl":null,"url":null,"abstract":"This paper describes the development of nonlinear state-space predictive controller based on distributed fuzzy-neural model. The presented approach assumes a state-space representation in order to obtain more compact form of the model, without statement of a great number of parameters needed to represent nonlinear relations. To increase the flexibility of the network, a set of fuzzy inferences is used to estimate the current system states, as well as to construct a simple predictor needed to update the future system behavior along the defined horizons. At each sampling period an optimization task performing Quadratic Programming minimization assuming the imposed constraints on the system parameters is solved. The performance of the proposed controller is assessed by simulation experiments in modeling and control of nonlinear systems with complicated dynamics.","PeriodicalId":173529,"journal":{"name":"2015 20th International Conference on Process Control (PC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 20th International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2015.7169934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes the development of nonlinear state-space predictive controller based on distributed fuzzy-neural model. The presented approach assumes a state-space representation in order to obtain more compact form of the model, without statement of a great number of parameters needed to represent nonlinear relations. To increase the flexibility of the network, a set of fuzzy inferences is used to estimate the current system states, as well as to construct a simple predictor needed to update the future system behavior along the defined horizons. At each sampling period an optimization task performing Quadratic Programming minimization assuming the imposed constraints on the system parameters is solved. The performance of the proposed controller is assessed by simulation experiments in modeling and control of nonlinear systems with complicated dynamics.