Spatial-Temporal Content Popularity Prediction in Cache Enabled Cellular Networks

Li Li, Hongfeng Tian, Yapeng Wang, Tiankui Zhang
{"title":"Spatial-Temporal Content Popularity Prediction in Cache Enabled Cellular Networks","authors":"Li Li, Hongfeng Tian, Yapeng Wang, Tiankui Zhang","doi":"10.1109/ISCIT55906.2022.9931189","DOIUrl":null,"url":null,"abstract":"With the development of Internet and mobile communication technology, the mobile network traffic is increasing at exponential rates. Edge caching is a promising technology to reduce network load and content distribution delay. Through content popularity prediction, cache revenue and network per-formance can be improved. This paper proposes a temporal graph convolutional network (TGCN) based content popularity prediction algorithm, which explore the spatial-temporal two-dimensional features in the cellular networks. The proposed TGCN algorithm captures the temporal-dimension dependence from the content request sequence in the base stations (BSs) and the spatial-dimension dependence from different BSs. Then the content request at each BS in the next time cycle is predicted by TGCN. Simulation results show that, compared with the existing algorithms, the proposed algorithm can effectively improve the prediction accuracy of content requests, at least 3%, and improve the cache hit rate of the networks.","PeriodicalId":325919,"journal":{"name":"2022 21st International Symposium on Communications and Information Technologies (ISCIT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Communications and Information Technologies (ISCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCIT55906.2022.9931189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the development of Internet and mobile communication technology, the mobile network traffic is increasing at exponential rates. Edge caching is a promising technology to reduce network load and content distribution delay. Through content popularity prediction, cache revenue and network per-formance can be improved. This paper proposes a temporal graph convolutional network (TGCN) based content popularity prediction algorithm, which explore the spatial-temporal two-dimensional features in the cellular networks. The proposed TGCN algorithm captures the temporal-dimension dependence from the content request sequence in the base stations (BSs) and the spatial-dimension dependence from different BSs. Then the content request at each BS in the next time cycle is predicted by TGCN. Simulation results show that, compared with the existing algorithms, the proposed algorithm can effectively improve the prediction accuracy of content requests, at least 3%, and improve the cache hit rate of the networks.
缓存支持蜂窝网络的时空内容流行度预测
随着互联网和移动通信技术的发展,移动网络流量呈指数级增长。边缘缓存是一种很有前途的技术,可以减少网络负载和内容分发延迟。通过内容流行度预测,可以提高缓存收益和网络性能。本文提出了一种基于时间图卷积网络(TGCN)的内容流行度预测算法,该算法探索了蜂窝网络中的时空二维特征。提出的TGCN算法从基站的内容请求序列中获取时间维度的相关性,从不同基站中获取空间维度的相关性。然后通过TGCN预测下一个时间周期内每个BS的内容请求。仿真结果表明,与现有算法相比,所提算法能有效提高内容请求的预测精度,至少提高3%,并提高网络的缓存命中率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信