{"title":"Constraint Logic: A Uniform Framework for Modeling Computation as Games","authors":"E. Demaine, R. Hearn","doi":"10.1109/CCC.2008.35","DOIUrl":null,"url":null,"abstract":"We introduce a simple game family, called constraint logic, where players reverse edges in a directed graph while satisfying vertex in-flow constraints. This game family can be interpreted in many different game-theoretic settings, ranging from zero-player automata to a more economic setting of team multiplayer games with hidden information. Each setting gives rise to a model of computation that we show corresponds to a classic complexity class. In this way we obtain a uniform framework for modeling various complexities of computation as games. Most surprising among our results is that a game with three players and a bounded amount of state can simulate any (infinite) Turing computation, making the game undecidable. Our framework also provides a more graphical, less formulaic viewpoint of computation. This graph model has been shown to be particularly appropriate for reducing to many existing combinatorial games and puzzles - such as Sokoban, rush hour, river crossing, tipover, the warehouseman's problem, pushing blocks, hinged-dissection reconfiguration, Amazons, and Konane (hawaiian checkers) - which have an intrinsically planar structure. Our framework makes it substantially easier to prove completeness of such games in their appropriate complexity classes.","PeriodicalId":338061,"journal":{"name":"2008 23rd Annual IEEE Conference on Computational Complexity","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
We introduce a simple game family, called constraint logic, where players reverse edges in a directed graph while satisfying vertex in-flow constraints. This game family can be interpreted in many different game-theoretic settings, ranging from zero-player automata to a more economic setting of team multiplayer games with hidden information. Each setting gives rise to a model of computation that we show corresponds to a classic complexity class. In this way we obtain a uniform framework for modeling various complexities of computation as games. Most surprising among our results is that a game with three players and a bounded amount of state can simulate any (infinite) Turing computation, making the game undecidable. Our framework also provides a more graphical, less formulaic viewpoint of computation. This graph model has been shown to be particularly appropriate for reducing to many existing combinatorial games and puzzles - such as Sokoban, rush hour, river crossing, tipover, the warehouseman's problem, pushing blocks, hinged-dissection reconfiguration, Amazons, and Konane (hawaiian checkers) - which have an intrinsically planar structure. Our framework makes it substantially easier to prove completeness of such games in their appropriate complexity classes.