Character Decomposition for Japanese-Chinese Character-Level Neural Machine Translation

Jinyi Zhang, Tadahiro Matsumoto
{"title":"Character Decomposition for Japanese-Chinese Character-Level Neural Machine Translation","authors":"Jinyi Zhang, Tadahiro Matsumoto","doi":"10.1109/IALP48816.2019.9037677","DOIUrl":null,"url":null,"abstract":"After years of development, Neural Machine Translation (NMT) has produced richer translation results than ever over various language pairs, becoming a new machine translation model with great potential. For the NMT model, it can only translate words/characters contained in the training data. One problem on NMT is handling of the low-frequency words/characters in the training data. In this paper, we propose a method for removing characters whose frequencies of appearance are less than a given minimum threshold by decomposing such characters into their components and/or pseudo-characters, using the Chinese character decomposition table we made. Experiments of Japanese-to-Chinese and Chinese-to-Japanese NMT with ASPEC-JC (Asian Scientific Paper Excerpt Corpus, Japanese-Chinese) corpus show that the BLEU scores, the training time and the number of parameters are varied with the number of the given minimum thresholds of decomposed characters.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

After years of development, Neural Machine Translation (NMT) has produced richer translation results than ever over various language pairs, becoming a new machine translation model with great potential. For the NMT model, it can only translate words/characters contained in the training data. One problem on NMT is handling of the low-frequency words/characters in the training data. In this paper, we propose a method for removing characters whose frequencies of appearance are less than a given minimum threshold by decomposing such characters into their components and/or pseudo-characters, using the Chinese character decomposition table we made. Experiments of Japanese-to-Chinese and Chinese-to-Japanese NMT with ASPEC-JC (Asian Scientific Paper Excerpt Corpus, Japanese-Chinese) corpus show that the BLEU scores, the training time and the number of parameters are varied with the number of the given minimum thresholds of decomposed characters.
日中字符级神经机器翻译的字符分解
经过多年的发展,神经机器翻译(NMT)在各种语言对上的翻译结果比以往更加丰富,成为一种具有巨大潜力的新型机器翻译模型。对于NMT模型,它只能翻译训练数据中包含的单词/字符。NMT中的一个问题是训练数据中低频词/字符的处理。本文提出了一种去除出现频率小于给定最小阈值的汉字的方法,该方法使用我们制作的汉字分解表,将这些汉字分解为其组成和/或伪字符。用ASPEC-JC (Asian Scientific Paper摘录Corpus, Japanese-Chinese)语料库对日文-汉文和中文-日文NMT进行的实验表明,BLEU分数、训练时间和参数数量随给定的分解字符最小阈值的个数而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信