{"title":"Scratchpad memory-global power optimization","authors":"M. Karthika, C. Rajasekaran","doi":"10.1109/ICPRIME.2012.6208343","DOIUrl":null,"url":null,"abstract":"Scratchpad Memories are widely employed in embedded systems as an alternative to caches because they achieve comparable performance with higher power efficiency. Here, Optimal SPM Mapping and Memory Power-Down techniques are used for minimize the total energy of the SPM. SPM mapping simply targets the minimum number of accesses to the main memory, i.e., active power. A global optimization should explicitly take into account memory access energy, leakage energy, and power-down/up energy penalty, to define the Optimal SPM mapping and Optimal memory power-down scheduling for minimizing the total energy in the memory sub-system. Synthesis results based on 1.32V CMOS standard-cell library shows that the proposed SPM reduces the power consumption by 25-30%.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Scratchpad Memories are widely employed in embedded systems as an alternative to caches because they achieve comparable performance with higher power efficiency. Here, Optimal SPM Mapping and Memory Power-Down techniques are used for minimize the total energy of the SPM. SPM mapping simply targets the minimum number of accesses to the main memory, i.e., active power. A global optimization should explicitly take into account memory access energy, leakage energy, and power-down/up energy penalty, to define the Optimal SPM mapping and Optimal memory power-down scheduling for minimizing the total energy in the memory sub-system. Synthesis results based on 1.32V CMOS standard-cell library shows that the proposed SPM reduces the power consumption by 25-30%.