Massive Multisite Variability-Aware Die Distribution Estimation for Analog/Mixed-Signal Circuits Test Validation

Praise O. Farayola, Isaac Bruce, Shravan K. Chaganti, Abalhassan Sheikh, S. Ravi, Degang Chen
{"title":"Massive Multisite Variability-Aware Die Distribution Estimation for Analog/Mixed-Signal Circuits Test Validation","authors":"Praise O. Farayola, Isaac Bruce, Shravan K. Chaganti, Abalhassan Sheikh, S. Ravi, Degang Chen","doi":"10.1109/DTIS53253.2021.9505144","DOIUrl":null,"url":null,"abstract":"Massive multisite testing significantly reduces test cost and immensely increases production throughput by simultaneously screening multiple devices under test (DUTs). However, non-trivial variations in measurement from site to site are inevitable, and they often alter the actual DUTs specifications leading to yield loss (good DUTs rejected as bad) or necessitate poorer DUT specifications. These site-induced variations make it challenging to know the true silicon performance in a multisite probing environment, making statistical processing control difficult. In this paper, we propose and compare three methods to remove the variability introduced by multisite test hardware for accurate estimation of DUTs true performance distributions. The key idea is to select high confidence good test sites for parametric analysis. We demonstrate the accuracy of the proposed methods using simulation and measurement data.","PeriodicalId":435982,"journal":{"name":"2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS53253.2021.9505144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Massive multisite testing significantly reduces test cost and immensely increases production throughput by simultaneously screening multiple devices under test (DUTs). However, non-trivial variations in measurement from site to site are inevitable, and they often alter the actual DUTs specifications leading to yield loss (good DUTs rejected as bad) or necessitate poorer DUT specifications. These site-induced variations make it challenging to know the true silicon performance in a multisite probing environment, making statistical processing control difficult. In this paper, we propose and compare three methods to remove the variability introduced by multisite test hardware for accurate estimation of DUTs true performance distributions. The key idea is to select high confidence good test sites for parametric analysis. We demonstrate the accuracy of the proposed methods using simulation and measurement data.
模拟/混合信号电路测试验证的大规模多站点可变感知芯片分布估计
通过同时筛选多个被测设备(dut),大规模多站点测试显著降低了测试成本,并极大地提高了生产吞吐量。然而,不同地点之间测量的重大变化是不可避免的,它们经常改变实际的DUT规格,导致产量损失(好的DUT被视为坏的而拒绝)或需要较差的DUT规格。这些位置引起的变化使得在多位置探测环境中了解硅的真实性能变得具有挑战性,使得统计处理控制变得困难。在本文中,我们提出并比较了三种消除多站点测试硬件引入的可变性的方法,以准确估计dut的真实性能分布。关键思想是选择高置信度好的测试点进行参数分析。我们用仿真和测量数据证明了所提出方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信