A real time race classification system

Y. Ou, Xinyu Wu, Huihuan Qian, Yangsheng Xu
{"title":"A real time race classification system","authors":"Y. Ou, Xinyu Wu, Huihuan Qian, Yangsheng Xu","doi":"10.1109/ICIA.2005.1635116","DOIUrl":null,"url":null,"abstract":"This paper presents the progress toward a face detection and race classification system that is robust and works in real-time. We address the race classification problem as classifying a frontal face into Asian or non-Asian. Firstly, we propose principal component analysis (PCA) for feature generation and independent component analysis (ICA) for feature extraction. Then, we use SVM for training process and combine different SVM classifiers to some new classifiers, which improve the classification rate to a new level. Experiments show that our system achieves a classification rate of 82.5 % based on a database containing 750 face images from FERET.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This paper presents the progress toward a face detection and race classification system that is robust and works in real-time. We address the race classification problem as classifying a frontal face into Asian or non-Asian. Firstly, we propose principal component analysis (PCA) for feature generation and independent component analysis (ICA) for feature extraction. Then, we use SVM for training process and combine different SVM classifiers to some new classifiers, which improve the classification rate to a new level. Experiments show that our system achieves a classification rate of 82.5 % based on a database containing 750 face images from FERET.
一个实时的种族分类系统
本文介绍了人脸检测和种族分类系统的研究进展,该系统具有鲁棒性和实时性。我们将种族分类问题视为将正面脸分为亚洲人或非亚洲人。首先,我们提出主成分分析(PCA)用于特征生成,独立成分分析(ICA)用于特征提取。然后,我们使用SVM进行训练过程,并将不同的SVM分类器组合成一些新的分类器,将分类率提高到一个新的水平。实验表明,基于FERET的750张人脸图像数据库,该系统的分类率达到82.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信