Петр Юрьевич Тимохин, P. Timokhin, Михаил Михайлюк, M. Mikhaylyuk
{"title":"Compact GPU-based Visualization Method for High-resolution ResultingData of Unstable Oil Displacement Simulation","authors":"Петр Юрьевич Тимохин, P. Timokhin, Михаил Михайлюк, M. Mikhaylyuk","doi":"10.30987/graphicon-2019-2-4-6","DOIUrl":null,"url":null,"abstract":"In the paper the task of real-time synthesis of quality images of resulting data obtained in simulation of unstable oil displacement from porous media is considered. A new, GPU-based method to construct and visualize on UltraHD screens a polygonal model of the isosurface of the saturation of displacing liquid was proposed. The method is based on distributing and parallelizing of «marching cubes» threads between GPU cores by means of programmable tessellation. As initial graphic primitives, quadrangular parametric patches are used, the processing of which on the GPU is high-performance and has low video memory overhead. The proposed method was implemented in visualization software and successfully tested. The proposed solution can be used in researches in oil and gas industry as well as in virtual environment systems, virtual laboratories, scientific and educational applications, etc.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"1143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-4-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the paper the task of real-time synthesis of quality images of resulting data obtained in simulation of unstable oil displacement from porous media is considered. A new, GPU-based method to construct and visualize on UltraHD screens a polygonal model of the isosurface of the saturation of displacing liquid was proposed. The method is based on distributing and parallelizing of «marching cubes» threads between GPU cores by means of programmable tessellation. As initial graphic primitives, quadrangular parametric patches are used, the processing of which on the GPU is high-performance and has low video memory overhead. The proposed method was implemented in visualization software and successfully tested. The proposed solution can be used in researches in oil and gas industry as well as in virtual environment systems, virtual laboratories, scientific and educational applications, etc.