Manuel Gutierrez, Peter A. Lindahl, A. Banerjee, S. Leeb
{"title":"Controlling the input impedance of constant power loads","authors":"Manuel Gutierrez, Peter A. Lindahl, A. Banerjee, S. Leeb","doi":"10.1109/APEC.2018.8341600","DOIUrl":null,"url":null,"abstract":"Power electronic circuits often regulate load power and present a constant power load (CPL) to the utility or other electrical source. Because CPLs exhibit a negative incremental input impedance, they pose stability concerns in both DC and AC systems. This paper presents a power converter for a constant power LED lighting load that mitigates these stability concerns by presenting a controllable input impedance to the electrical source. The use of an energy buffer allows the converter to control input power to resemble a resistive load over short times, while still delivering constant output power. Experimental results demonstrate that the converter exhibits a resistive input impedance at frequencies over 0.5 Hz while maintaining constant power to the LED load.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Power electronic circuits often regulate load power and present a constant power load (CPL) to the utility or other electrical source. Because CPLs exhibit a negative incremental input impedance, they pose stability concerns in both DC and AC systems. This paper presents a power converter for a constant power LED lighting load that mitigates these stability concerns by presenting a controllable input impedance to the electrical source. The use of an energy buffer allows the converter to control input power to resemble a resistive load over short times, while still delivering constant output power. Experimental results demonstrate that the converter exhibits a resistive input impedance at frequencies over 0.5 Hz while maintaining constant power to the LED load.