Identification of systems using binary sensors via Support Vector Machines

Abdelhak Goudjil, M. Pouliquen, E. Pigeon, O. Gehan, M. M'Saad
{"title":"Identification of systems using binary sensors via Support Vector Machines","authors":"Abdelhak Goudjil, M. Pouliquen, E. Pigeon, O. Gehan, M. M'Saad","doi":"10.1109/CDC.2015.7402729","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the identification of systems based on binary measurements of the output. The linear part of the system is parameterized by a Finite Impulse Response filter and the binary sensor is parameterized by a threshold. The idea is to formulate the identification problem as a classification problem. This formulation allows the use of supervised learning algorithm such as Support Vector Machines (SVM). Simulation examples are given to illustrate the performance of the presented method.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7402729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we consider the identification of systems based on binary measurements of the output. The linear part of the system is parameterized by a Finite Impulse Response filter and the binary sensor is parameterized by a threshold. The idea is to formulate the identification problem as a classification problem. This formulation allows the use of supervised learning algorithm such as Support Vector Machines (SVM). Simulation examples are given to illustrate the performance of the presented method.
基于支持向量机的二元传感器系统识别
在本文中,我们考虑基于输出二值测量的系统辨识。系统的线性部分由有限脉冲响应滤波器参数化,二值传感器由阈值参数化。其思想是将识别问题表述为分类问题。这个公式允许使用监督学习算法,如支持向量机(SVM)。仿真实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信