Abdelhak Goudjil, M. Pouliquen, E. Pigeon, O. Gehan, M. M'Saad
{"title":"Identification of systems using binary sensors via Support Vector Machines","authors":"Abdelhak Goudjil, M. Pouliquen, E. Pigeon, O. Gehan, M. M'Saad","doi":"10.1109/CDC.2015.7402729","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the identification of systems based on binary measurements of the output. The linear part of the system is parameterized by a Finite Impulse Response filter and the binary sensor is parameterized by a threshold. The idea is to formulate the identification problem as a classification problem. This formulation allows the use of supervised learning algorithm such as Support Vector Machines (SVM). Simulation examples are given to illustrate the performance of the presented method.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7402729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
In this paper, we consider the identification of systems based on binary measurements of the output. The linear part of the system is parameterized by a Finite Impulse Response filter and the binary sensor is parameterized by a threshold. The idea is to formulate the identification problem as a classification problem. This formulation allows the use of supervised learning algorithm such as Support Vector Machines (SVM). Simulation examples are given to illustrate the performance of the presented method.