Graph-based Object Tracking Using Structural Pattern Recognition

Ana Beatriz Vicentim Graciano, R. M. C. Junior, I. Bloch
{"title":"Graph-based Object Tracking Using Structural Pattern Recognition","authors":"Ana Beatriz Vicentim Graciano, R. M. C. Junior, I. Bloch","doi":"10.1109/SIBGRAPI.2007.43","DOIUrl":null,"url":null,"abstract":"This paper proposes a model-based methodology for recognizing and tracking objects in digital image sequences. Objects are represented by attributed relational graphs (or ARGs), which carry both local and relational information about them. The recognition is performed by inexact graph matching, which consists in finding an approximate homomorphism between ARGs derived from an input video and a model image. Searching for a suitable homomorphism is achieved through a tree-search optimization algorithm and the minimization of a pre-defined cost function. Motion smoothness between successive frames is exploited to achieve the recognition over the whole sequence, with improved spatio-temporal coherence.","PeriodicalId":434632,"journal":{"name":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2007.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

This paper proposes a model-based methodology for recognizing and tracking objects in digital image sequences. Objects are represented by attributed relational graphs (or ARGs), which carry both local and relational information about them. The recognition is performed by inexact graph matching, which consists in finding an approximate homomorphism between ARGs derived from an input video and a model image. Searching for a suitable homomorphism is achieved through a tree-search optimization algorithm and the minimization of a pre-defined cost function. Motion smoothness between successive frames is exploited to achieve the recognition over the whole sequence, with improved spatio-temporal coherence.
使用结构模式识别的基于图的目标跟踪
提出了一种基于模型的数字图像序列目标识别与跟踪方法。对象由带有属性的关系图(或arg)表示,其中包含有关对象的本地和关系信息。识别是通过非精确图匹配来完成的,这包括在从输入视频和模型图像中获得的arg之间寻找近似同态。搜索合适的同态是通过树搜索优化算法和最小化预定义的代价函数实现的。利用连续帧之间的运动平滑性来实现对整个序列的识别,提高了时空一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信