Content-Based Video Relevance Prediction with Second-Order Relevance and Attention Modeling

Xusong Chen, Rui Zhao, Shengjie Ma, Dong Liu, Zhengjun Zha
{"title":"Content-Based Video Relevance Prediction with Second-Order Relevance and Attention Modeling","authors":"Xusong Chen, Rui Zhao, Shengjie Ma, Dong Liu, Zhengjun Zha","doi":"10.1145/3240508.3266434","DOIUrl":null,"url":null,"abstract":"This paper describes our proposed method for the Content-Based Video Relevance Prediction (CBVRP) challenge. Our method is based on deep learning, i.e. we train a deep network to predict the relevance between two video sequences from their features. We explore the usage of second-order relevance, both in preparing training data, and in extending the deep network. Second-order relevance refers to e.g. the relevance between x and z if x is relevant to y and y is relevant to z. In our proposed method, we use second-order relevance to increase positive samples and decrease negative samples, when preparing training data. We further extend the deep network with an attention module, where the attention mechanism is designed for second-order relevant video sequences. We verify the effectiveness of our method on the validation set of the CBVRP challenge.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3266434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper describes our proposed method for the Content-Based Video Relevance Prediction (CBVRP) challenge. Our method is based on deep learning, i.e. we train a deep network to predict the relevance between two video sequences from their features. We explore the usage of second-order relevance, both in preparing training data, and in extending the deep network. Second-order relevance refers to e.g. the relevance between x and z if x is relevant to y and y is relevant to z. In our proposed method, we use second-order relevance to increase positive samples and decrease negative samples, when preparing training data. We further extend the deep network with an attention module, where the attention mechanism is designed for second-order relevant video sequences. We verify the effectiveness of our method on the validation set of the CBVRP challenge.
通过二阶相关性和注意力建模进行基于内容的视频相关性预测
本文介绍了我们针对基于内容的视频相关性预测(CBVRP)挑战提出的方法。我们的方法基于深度学习,即我们训练一个深度网络,根据两个视频序列的特征来预测它们之间的相关性。我们在准备训练数据和扩展深度网络时都探索了二阶相关性的用法。在我们提出的方法中,我们在准备训练数据时使用二阶相关性来增加正样本和减少负样本。我们还利用注意力模块进一步扩展了深度网络,其中的注意力机制是针对二阶相关视频序列设计的。我们在 CBVRP 挑战赛的验证集上验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信