Using machine learning to predict low academic performance at a Nigerian university

Ebiemi Allen Ekubo, B. M. Esiefarienrhe
{"title":"Using machine learning to predict low academic performance at a Nigerian university","authors":"Ebiemi Allen Ekubo, B. M. Esiefarienrhe","doi":"10.23962/ajic.i30.14839","DOIUrl":null,"url":null,"abstract":"This study evaluates the ability of various machine-learning techniques to predict low academic performance among Nigerian tertiary students. Using data collected from undergraduate student records at Niger Delta University in Bayelsa State, the research applies the cross-industry standard process for data mining (CRISP-DM) research methodology for data mining and the Waikato Environment for Knowledge Analysis (WEKA) tool for modelling. Five machine-learning classifier algorithms are tested—J48 decision tree, logistic regression (LR), multilayer perceptron (MLP), naïve Bayes (NB), and sequential minimal optimisation (SMO)—and it is found that MLP is the best classifier for the dataset. The study then develops a predictive software application, using PHP and Python, for implementation of the MLP model, and the software achieves 98% accuracy.","PeriodicalId":409918,"journal":{"name":"The African Journal of Information and Communication (AJIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The African Journal of Information and Communication (AJIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23962/ajic.i30.14839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study evaluates the ability of various machine-learning techniques to predict low academic performance among Nigerian tertiary students. Using data collected from undergraduate student records at Niger Delta University in Bayelsa State, the research applies the cross-industry standard process for data mining (CRISP-DM) research methodology for data mining and the Waikato Environment for Knowledge Analysis (WEKA) tool for modelling. Five machine-learning classifier algorithms are tested—J48 decision tree, logistic regression (LR), multilayer perceptron (MLP), naïve Bayes (NB), and sequential minimal optimisation (SMO)—and it is found that MLP is the best classifier for the dataset. The study then develops a predictive software application, using PHP and Python, for implementation of the MLP model, and the software achieves 98% accuracy.
使用机器学习来预测尼日利亚一所大学的低学习成绩
本研究评估了各种机器学习技术预测尼日利亚大学生学习成绩低下的能力。利用从巴耶尔萨州尼日尔三角洲大学本科生记录中收集的数据,该研究应用数据挖掘的跨行业标准过程(CRISP-DM)研究方法和怀卡托知识分析环境(WEKA)工具进行建模。测试了五种机器学习分类器算法- j48决策树,逻辑回归(LR),多层感知器(MLP), naïve贝叶斯(NB)和顺序最小优化(SMO) -并且发现MLP是数据集的最佳分类器。然后,本研究开发了一个预测软件应用程序,使用PHP和Python来实现MLP模型,软件达到98%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信