Renewable Energy Management Using Action Dependent Heuristic Dynamic Programming

Gulnaz Sterling, Benjamin Tyler
{"title":"Renewable Energy Management Using Action Dependent Heuristic Dynamic Programming","authors":"Gulnaz Sterling, Benjamin Tyler","doi":"10.1109/ISC2.2018.8656942","DOIUrl":null,"url":null,"abstract":"With increases in global energy demand and the rapid consumption of fossil fuels, the use of green energy and more efficient energy management approaches are receiving serious attention. Our focus is on improving energy resource scheduling in smart buildings and homes to minimize cost, while meeting energy demand. Here, we present an approach using Action Dependent Heuristic Dynamic Programming (ADHDP) optimization for a smart home set-up using solar panels, wind turbines, and a storage battery.In this work, we trained and evaluated our ADHDP approach using different simulation scenarios with various amounts of available renewable energy. We then demonstrated via computer simulation that our approach is more effective in cost minimization compared to a standard rule-based method. A correlation between optimization improvement and available renewable energy was also confirmed by computer simulation in all scenarios.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With increases in global energy demand and the rapid consumption of fossil fuels, the use of green energy and more efficient energy management approaches are receiving serious attention. Our focus is on improving energy resource scheduling in smart buildings and homes to minimize cost, while meeting energy demand. Here, we present an approach using Action Dependent Heuristic Dynamic Programming (ADHDP) optimization for a smart home set-up using solar panels, wind turbines, and a storage battery.In this work, we trained and evaluated our ADHDP approach using different simulation scenarios with various amounts of available renewable energy. We then demonstrated via computer simulation that our approach is more effective in cost minimization compared to a standard rule-based method. A correlation between optimization improvement and available renewable energy was also confirmed by computer simulation in all scenarios.
基于动作依赖启发式动态规划的可再生能源管理
随着全球能源需求的增加和矿物燃料的迅速消耗,绿色能源的使用和更有效的能源管理方法正受到严重重视。我们的重点是改善智能建筑和家庭的能源调度,以最大限度地降低成本,同时满足能源需求。在这里,我们提出了一种使用动作依赖启发式动态规划(ADHDP)优化的方法,用于使用太阳能电池板,风力涡轮机和蓄电池的智能家居设置。在这项工作中,我们使用不同数量的可用可再生能源的不同模拟场景来训练和评估我们的ADHDP方法。然后,我们通过计算机模拟证明,与标准的基于规则的方法相比,我们的方法在成本最小化方面更有效。所有情景下的计算机模拟也证实了优化改进与可用可再生能源之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信