Deviation from weak Banach–Saks property for countable direct sums

A. Kryczka
{"title":"Deviation from weak Banach–Saks property for countable direct sums","authors":"A. Kryczka","doi":"10.1515/UMCSMATH-2015-0005","DOIUrl":null,"url":null,"abstract":"We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach–Saks property. We prove that if (X v ) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach–Saks property, then the deviation from the weak Banach–Saks property of an operator of a certain class between direct sums E(X v ) is equal to the supremum of such deviations attained on the coordinates X v . This is a quantitative version for operators of the result for the Kothe–Bochner sequence spaces E(X) that if E has the Banach–Saks property, then E(X) has the weak Banach–Saks property if and only if so has X.","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/UMCSMATH-2015-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a seminorm for bounded linear operators between Banach spaces that shows the deviation from the weak Banach–Saks property. We prove that if (X v ) is a sequence of Banach spaces and a Banach sequence lattice E has the Banach–Saks property, then the deviation from the weak Banach–Saks property of an operator of a certain class between direct sums E(X v ) is equal to the supremum of such deviations attained on the coordinates X v . This is a quantitative version for operators of the result for the Kothe–Bochner sequence spaces E(X) that if E has the Banach–Saks property, then E(X) has the weak Banach–Saks property if and only if so has X.
可数直接和对弱Banach-Saks性质的偏离
我们引入了Banach空间间有界线性算子的半模,它显示了对弱Banach - saks性质的偏离。证明了如果(X v)是一个Banach空间序列,且一个Banach序列格E具有Banach - saks性质,则某类算子在直和E(X v)之间对弱Banach - saks性质的偏离等于在坐标X v上得到的这种偏离的极值。这是Kothe-Bochner序列空间E(X)的结果的一个定量版本,如果E具有Banach-Saks性质,则E(X)具有弱Banach-Saks性质当且仅当X具有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信