Underwater Video Enhancement Using Manta Ray Foraging Lion Optimization-Based Fusion Convolutional Neural Network

Pooja Honnutagi, Y. S. Laitha, V. D. Mytri
{"title":"Underwater Video Enhancement Using Manta Ray Foraging Lion Optimization-Based Fusion Convolutional Neural Network","authors":"Pooja Honnutagi, Y. S. Laitha, V. D. Mytri","doi":"10.1142/s0219467823500316","DOIUrl":null,"url":null,"abstract":"Due to the significance of aquatic robotics and marine engineering, the underwater video enhancement has gained huge attention. Thus, a video enhancement method, namely Manta Ray Foraging Lion Optimization-based fusion Convolutional Neural Network (MRFLO-based fusion CNN) algorithm is developed in this research for enhancing the quality of the underwater videos. The MRFLO is developed by merging the Lion Optimization Algorithm (LOA) and Manta Ray Foraging Optimization (MRFO). The blur in the input video frame is detected and estimated through the Laplacian’s variance method. The fusion CNN classifier is used for deblurring the frame by combining both the input frame and blur matrix. The fusion CNN classifier is tuned by the developed MRFLO algorithm. The pixel of the deblurred frame is enhanced using the Type II Fuzzy system and Cuckoo Search optimization algorithm filter (T2FCS filter). The developed MRFLO-based fusion CNN algorithm uses the metrics, Underwater Image Quality Measure (UIQM), Underwater Color Image Quality Evaluation (UCIQE), Structural Similarity Index Measure (SSIM), Mean Square Error (MSE), and Peak Signal-to-Noise Ratio (PSNR) for the evaluation by varying the blur intensity. The proposed MRFLO-based fusion CNN algorithm acquired a PSNR of 38.9118, SSIM of 0.9593, MSE of 3.2214, UIQM of 3.0041 and UCIQE of 0.7881.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823500316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the significance of aquatic robotics and marine engineering, the underwater video enhancement has gained huge attention. Thus, a video enhancement method, namely Manta Ray Foraging Lion Optimization-based fusion Convolutional Neural Network (MRFLO-based fusion CNN) algorithm is developed in this research for enhancing the quality of the underwater videos. The MRFLO is developed by merging the Lion Optimization Algorithm (LOA) and Manta Ray Foraging Optimization (MRFO). The blur in the input video frame is detected and estimated through the Laplacian’s variance method. The fusion CNN classifier is used for deblurring the frame by combining both the input frame and blur matrix. The fusion CNN classifier is tuned by the developed MRFLO algorithm. The pixel of the deblurred frame is enhanced using the Type II Fuzzy system and Cuckoo Search optimization algorithm filter (T2FCS filter). The developed MRFLO-based fusion CNN algorithm uses the metrics, Underwater Image Quality Measure (UIQM), Underwater Color Image Quality Evaluation (UCIQE), Structural Similarity Index Measure (SSIM), Mean Square Error (MSE), and Peak Signal-to-Noise Ratio (PSNR) for the evaluation by varying the blur intensity. The proposed MRFLO-based fusion CNN algorithm acquired a PSNR of 38.9118, SSIM of 0.9593, MSE of 3.2214, UIQM of 3.0041 and UCIQE of 0.7881.
基于蝠鲼觅食狮优化的融合卷积神经网络水下视频增强
由于水下机器人和海洋工程的重要性,水下视频增强得到了广泛的关注。因此,本研究提出了一种视频增强方法,即基于蝠鲼觅食狮优化的融合卷积神经网络(mrfl -based fusion CNN)算法,以增强水下视频的质量。MRFLO是将狮子优化算法(LOA)和蝠鲼觅食优化算法(MRFO)相结合而开发的。通过拉普拉斯方差法对输入视频帧中的模糊进行检测和估计。融合CNN分类器通过结合输入帧和模糊矩阵对帧进行去模糊处理。采用所开发的MRFLO算法对融合CNN分类器进行调谐。使用II型模糊系统和布谷鸟搜索优化算法滤波器(T2FCS滤波器)增强去模糊帧的像素。所开发的基于mrflo的融合CNN算法使用指标,水下图像质量度量(UIQM),水下彩色图像质量评估(UCIQE),结构相似指数度量(SSIM),均方误差(MSE)和峰值信噪比(PSNR)通过改变模糊强度进行评估。所提出的基于mrflo的融合CNN算法的PSNR为38.9118,SSIM为0.9593,MSE为3.2214,UIQM为3.0041,UCIQE为0.7881。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信