Dynamic Network Quantile Regression Model

Xiu Xu, Weining Wang, Y. Shin, Chaowen Zheng
{"title":"Dynamic Network Quantile Regression Model","authors":"Xiu Xu, Weining Wang, Y. Shin, Chaowen Zheng","doi":"10.1080/07350015.2022.2093882","DOIUrl":null,"url":null,"abstract":"We propose a dynamic network quantile regression model to investigate the quantile connectedness using a predetermined network information. We extend the existing network quantile autoregression model of Zhu et al. (2019b) by explicitly allowing the contemporaneous network effects and controlling for the common factors across quantiles. To cope with the endogeneity issue due to simultaneous network spillovers, we adopt the instrumental variable quantile regression (IVQR) estimation and derive the consistency and asymptotic normality of the IVQR estimator using the near epoch dependence property of the network process. Via Monte Carlo simulations, we confirm the satisfactory performance of the IVQR estimator across different quantiles under the different network structures. Finally, we demonstrate the usefulness of our proposed approach with an application to the dataset on the stocks traded in NYSE and NASDAQ in 2016. JEL classification: C32, C51, G17","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2093882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a dynamic network quantile regression model to investigate the quantile connectedness using a predetermined network information. We extend the existing network quantile autoregression model of Zhu et al. (2019b) by explicitly allowing the contemporaneous network effects and controlling for the common factors across quantiles. To cope with the endogeneity issue due to simultaneous network spillovers, we adopt the instrumental variable quantile regression (IVQR) estimation and derive the consistency and asymptotic normality of the IVQR estimator using the near epoch dependence property of the network process. Via Monte Carlo simulations, we confirm the satisfactory performance of the IVQR estimator across different quantiles under the different network structures. Finally, we demonstrate the usefulness of our proposed approach with an application to the dataset on the stocks traded in NYSE and NASDAQ in 2016. JEL classification: C32, C51, G17
动态网络分位数回归模型
我们提出了一个动态网络分位数回归模型,利用预先确定的网络信息来研究分位数连通性。我们通过明确允许同时网络效应并控制跨分位数的共同因素,扩展了Zhu等人(2019b)现有的网络分位数自回归模型。为了解决同时网络溢出所带来的内生性问题,我们采用工具变量分位数回归(IVQR)估计,并利用网络过程的近历元依赖性,推导了IVQR估计量的一致性和渐近正态性。通过蒙特卡罗模拟,我们证实了在不同网络结构下,IVQR估计器在不同分位数上的令人满意的性能。最后,我们通过对2016年在纽约证券交易所和纳斯达克交易的股票数据集的应用,证明了我们提出的方法的有效性。JEL分类:C32、C51、G17
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信