An optimum Laguerre expansion for the envelope PDF of two sine waves in Gaussian noise

A. Abdi, S. Nader-Esfahani
{"title":"An optimum Laguerre expansion for the envelope PDF of two sine waves in Gaussian noise","authors":"A. Abdi, S. Nader-Esfahani","doi":"10.1109/SECON.1996.510048","DOIUrl":null,"url":null,"abstract":"The sum of two randomly-phased sine waves and Gaussian noise arises in various fields of communications. A Laguerre series and also a power series are introduced, for the envelope PDF of this random process. Moreover, tight upper bounds are derived for the truncation error of these two infinite series. Comparison of these two upper bounds show that the Laguerre series is superior to the power series; because for a fixed number of terms, it yields minimum truncation error.","PeriodicalId":338029,"journal":{"name":"Proceedings of SOUTHEASTCON '96","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1996.510048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The sum of two randomly-phased sine waves and Gaussian noise arises in various fields of communications. A Laguerre series and also a power series are introduced, for the envelope PDF of this random process. Moreover, tight upper bounds are derived for the truncation error of these two infinite series. Comparison of these two upper bounds show that the Laguerre series is superior to the power series; because for a fixed number of terms, it yields minimum truncation error.
高斯噪声中两个正弦波包络PDF的最优拉盖尔展开
两个随机相位正弦波和高斯噪声的和出现在通信的各个领域。对于这个随机过程的包络PDF,我们引入了一个拉盖尔级数和一个幂级数。并给出了这两个无穷级数截断误差的紧上界。两个上界的比较表明,拉盖尔级数优于幂级数;因为对于固定数量的项,它产生最小的截断误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信