Luis Tomás, Per-Olov Östberg, María Blanca Caminero, C. Carrión, E. Elmroth
{"title":"An Adaptable In-advance and Fairshare Meta-scheduling Architecture to Improve Grid QoS","authors":"Luis Tomás, Per-Olov Östberg, María Blanca Caminero, C. Carrión, E. Elmroth","doi":"10.1109/Grid.2011.37","DOIUrl":null,"url":null,"abstract":"Grids are highly variable heterogeneous systems where resources may span multiple administrative domains and utilize heterogeneous schedulers, which complicates enforcement of end-user resource utilization quotas. This work focuses on enhancement of resource utilization quality of service through combination of two systems. A predictive meta-scheduling framework and a distributed fairs hare job prioritization system. The first, SA-Layer, is a system designed to provide scheduling of jobs in advance by ensuring resource availability for future job executions. The second, FS Grid, provides an efficient mechanism for fairs hare-based job prioritization. The integrated architecture presented in this work combines the strengths of both systems and improves perceived end-user quality of service by providing reliable resource allocations adhering to usage allocation policies.","PeriodicalId":308086,"journal":{"name":"2011 IEEE/ACM 12th International Conference on Grid Computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM 12th International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Grid.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Grids are highly variable heterogeneous systems where resources may span multiple administrative domains and utilize heterogeneous schedulers, which complicates enforcement of end-user resource utilization quotas. This work focuses on enhancement of resource utilization quality of service through combination of two systems. A predictive meta-scheduling framework and a distributed fairs hare job prioritization system. The first, SA-Layer, is a system designed to provide scheduling of jobs in advance by ensuring resource availability for future job executions. The second, FS Grid, provides an efficient mechanism for fairs hare-based job prioritization. The integrated architecture presented in this work combines the strengths of both systems and improves perceived end-user quality of service by providing reliable resource allocations adhering to usage allocation policies.