{"title":"Using mixtures in econometric models: a brief review and some new results","authors":"Giovanni Compiani, Yuichi Kitamura","doi":"10.1111/ectj.12068","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper is concerned with applications of mixture models in econometrics. Focused attention is given to semiparametric and nonparametric models that incorporate mixture distributions, where important issues about model specifications arise. For example, there is a significant difference between a finite mixture and a continuous mixture in terms of model identifiability. Likewise, the dimension of the latent mixing variables is a critical issue, in particular when a continuous mixture is used. We present applications of mixture models to address various problems in econometrics, such as unobserved heterogeneity and multiple equilibria. New nonparametric identification results are developed for finite mixture models with testable exclusion restrictions without relying on an identification-at-infinity assumption on covariates. The results apply to mixtures with both continuous and discrete covariates, delivering point identification under weak conditions.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12068","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12068","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 43
Abstract
This paper is concerned with applications of mixture models in econometrics. Focused attention is given to semiparametric and nonparametric models that incorporate mixture distributions, where important issues about model specifications arise. For example, there is a significant difference between a finite mixture and a continuous mixture in terms of model identifiability. Likewise, the dimension of the latent mixing variables is a critical issue, in particular when a continuous mixture is used. We present applications of mixture models to address various problems in econometrics, such as unobserved heterogeneity and multiple equilibria. New nonparametric identification results are developed for finite mixture models with testable exclusion restrictions without relying on an identification-at-infinity assumption on covariates. The results apply to mixtures with both continuous and discrete covariates, delivering point identification under weak conditions.
期刊介绍:
The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.