Towards Playing a 3D First-Person Shooter Game Using a Classification Deep Neural Network Architecture

Y. L. Nogueira, C. Vidal, J. B. C. Neto
{"title":"Towards Playing a 3D First-Person Shooter Game Using a Classification Deep Neural Network Architecture","authors":"Y. L. Nogueira, C. Vidal, J. B. C. Neto","doi":"10.1109/SVR.2017.24","DOIUrl":null,"url":null,"abstract":"In this work, we present a network architecture to solve a supervised learning problem, the classification of a handwritten dataset, and a reinforcement learning problem, a complex First-Person Shooter 3D game environment. We used a Deep Neural Network model to solve both problems. For classification, we used a Softmax regression and cross entropy loss to train the network. To play the game, we used a Q-Learning adaptation for Deep Learning to train the autonomous agent. In both cases, the input was only the pixels of an image. We show that this single network architecture is suitable for the classification task and is capable of playing the 3D game. This result gives us an insight into the possibility of a general network architecture, capable of solving any kind of problems, regardless of the learning paradigm.","PeriodicalId":371182,"journal":{"name":"2017 19th Symposium on Virtual and Augmented Reality (SVR)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th Symposium on Virtual and Augmented Reality (SVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVR.2017.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work, we present a network architecture to solve a supervised learning problem, the classification of a handwritten dataset, and a reinforcement learning problem, a complex First-Person Shooter 3D game environment. We used a Deep Neural Network model to solve both problems. For classification, we used a Softmax regression and cross entropy loss to train the network. To play the game, we used a Q-Learning adaptation for Deep Learning to train the autonomous agent. In both cases, the input was only the pixels of an image. We show that this single network architecture is suitable for the classification task and is capable of playing the 3D game. This result gives us an insight into the possibility of a general network architecture, capable of solving any kind of problems, regardless of the learning paradigm.
使用分类深度神经网络架构玩3D第一人称射击游戏
在这项工作中,我们提出了一个网络架构来解决一个监督学习问题,一个手写数据集的分类,以及一个强化学习问题,一个复杂的第一人称射击3D游戏环境。我们使用深度神经网络模型来解决这两个问题。对于分类,我们使用Softmax回归和交叉熵损失来训练网络。为了玩这个游戏,我们使用了深度学习的Q-Learning适应来训练自主代理。在这两种情况下,输入都只是图像的像素。我们证明了这种单一的网络结构适合于分类任务,并且能够玩3D游戏。这个结果让我们深入了解了通用网络架构的可能性,能够解决任何类型的问题,而不考虑学习范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信