Bifurcation analysis of Hénon-like maps

I. Djellit, W. Selmani
{"title":"Bifurcation analysis of Hénon-like maps","authors":"I. Djellit, W. Selmani","doi":"10.1504/IJCSM.2019.098740","DOIUrl":null,"url":null,"abstract":"The dynamic behaviour of a dynamical system, described by a planar map, is analytically and numerically explored. We examine the analytical conditions for the stability and bifurcation of the fixed points of the system and by using the numerical methods, we compute bifurcation curves of fixed points and cycles with orders up to five under variation of three parameters, and compute all codimension-1 and codimension-2 bifurcations on the corresponding curves. These curves form stability boundaries of various types of cycles which emanate around codimension-2 bifurcation points. Mathematical underpinnings and numerical simulations confirm our results and contribute to reveal further complex dynamical behaviours.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2019.098740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The dynamic behaviour of a dynamical system, described by a planar map, is analytically and numerically explored. We examine the analytical conditions for the stability and bifurcation of the fixed points of the system and by using the numerical methods, we compute bifurcation curves of fixed points and cycles with orders up to five under variation of three parameters, and compute all codimension-1 and codimension-2 bifurcations on the corresponding curves. These curves form stability boundaries of various types of cycles which emanate around codimension-2 bifurcation points. Mathematical underpinnings and numerical simulations confirm our results and contribute to reveal further complex dynamical behaviours.
hsamnon -like地图的分岔分析
一个动力系统的动力学行为,描述了一个平面地图,是分析和数值探索。研究了系统不动点的稳定性和分岔的解析条件,用数值方法计算了三参数变化下不动点和5阶循环的分岔曲线,并计算了相应曲线上的所有余维1分岔和余维2分岔。这些曲线形成了沿余维2分岔点发散的各种类型环的稳定性边界。数学基础和数值模拟证实了我们的结果,并有助于揭示进一步复杂的动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信