Multivariate generalised gamma kernel density estimators and application to non-negative data

L. Harfouche, N. Zougab, S. Adjabi
{"title":"Multivariate generalised gamma kernel density estimators and application to non-negative data","authors":"L. Harfouche, N. Zougab, S. Adjabi","doi":"10.1504/ijcsm.2020.10028092","DOIUrl":null,"url":null,"abstract":"This paper proposes a classical multivariate generalised gamma (GG) kernel estimator for probability density function (pdf) estimation in the context of multivariate nonnegative data. Then, we show that the multiplicative bias correction (MBC) techniques can be applied for multivariate GG kernel density estimator as in Funke and Kawka (2015). Some properties (bias, variance and mean integrated squared error) of the corresponding estimators are also provided. The choice of the vector of bandwidths is investigated by adopting the popular cross-validation technique. Finally, the performances of the classical and MBC estimator based on the family of GG kernels are illustrated by a simulation study and real data.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10028092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a classical multivariate generalised gamma (GG) kernel estimator for probability density function (pdf) estimation in the context of multivariate nonnegative data. Then, we show that the multiplicative bias correction (MBC) techniques can be applied for multivariate GG kernel density estimator as in Funke and Kawka (2015). Some properties (bias, variance and mean integrated squared error) of the corresponding estimators are also provided. The choice of the vector of bandwidths is investigated by adopting the popular cross-validation technique. Finally, the performances of the classical and MBC estimator based on the family of GG kernels are illustrated by a simulation study and real data.
多元广义核密度估计及其在非负数据上的应用
本文提出了一种经典的多元广义伽玛核估计器,用于多元非负数据的概率密度函数估计。然后,我们证明了乘法偏差校正(MBC)技术可以应用于多元GG核密度估计,如Funke和Kawka(2015)所述。给出了相应估计量的一些性质(偏差、方差和平均积分平方误差)。采用流行的交叉验证技术对带宽向量的选择进行了研究。最后,通过仿真研究和实际数据说明了基于GG核族的经典估计器和MBC估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信