A uniformly convergent numerical scheme for singularly perturbed differential equation with integral boundary condition arising in neural network

D. Shakti, J. Mohapatra
{"title":"A uniformly convergent numerical scheme for singularly perturbed differential equation with integral boundary condition arising in neural network","authors":"D. Shakti, J. Mohapatra","doi":"10.1504/ijcsm.2019.10024351","DOIUrl":null,"url":null,"abstract":"This article deals with a singularly perturbed quasilinear boundary value problem with integral boundary condition which arises in neural network. The problem is discretised by using an upwind finite difference scheme on a non-uniform mesh obtained via equidistribution of a monitor function. We prove that the method is first order convergent in the discrete maximum norm independent of perturbation parameter. The parameter uniform convergence is confirmed by numerical computations.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2019.10024351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article deals with a singularly perturbed quasilinear boundary value problem with integral boundary condition which arises in neural network. The problem is discretised by using an upwind finite difference scheme on a non-uniform mesh obtained via equidistribution of a monitor function. We prove that the method is first order convergent in the discrete maximum norm independent of perturbation parameter. The parameter uniform convergence is confirmed by numerical computations.
神经网络中具有积分边界条件的奇异摄动微分方程的一致收敛数值格式
研究了一类神经网络中出现的具有积分边界条件的奇异摄动拟线性边值问题。在监测函数等分布得到的非均匀网格上,采用迎风有限差分格式对问题进行离散。证明了该方法在独立于扰动参数的离散极大范数下是一阶收敛的。数值计算证实了参数一致收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信