{"title":"A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances","authors":"R. D. de Souza, F. D. de Carvalho","doi":"10.1109/ichis.2007.4344046","DOIUrl":null,"url":null,"abstract":"This work presents a clustering method for mixed feature-type symbolic data. The presented method needs a previous pre-processing step to transform mixed symbolic data into modal symbolic data. The dynamic clustering algorithm with adaptive distances has then as input a set of vectors of modal symbolic data (weight distributions) and furnishes a partition and a prototype to each class by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives based on adaptive squared Euclidean distances. Examples with synthetic symbolic data sets and an application with a real symbolic data sets show the usefulness of this method.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichis.2007.4344046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work presents a clustering method for mixed feature-type symbolic data. The presented method needs a previous pre-processing step to transform mixed symbolic data into modal symbolic data. The dynamic clustering algorithm with adaptive distances has then as input a set of vectors of modal symbolic data (weight distributions) and furnishes a partition and a prototype to each class by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives based on adaptive squared Euclidean distances. Examples with synthetic symbolic data sets and an application with a real symbolic data sets show the usefulness of this method.