The shortest vector in a lattice is hard to approximate to within some constant

Daniele Micciancio
{"title":"The shortest vector in a lattice is hard to approximate to within some constant","authors":"Daniele Micciancio","doi":"10.1109/SFCS.1998.743432","DOIUrl":null,"url":null,"abstract":"We show the shortest vector problem in the l/sub 2/ norm is NP-hard (for randomized reductions) to approximate within any constant factor less than /spl radic/2. We also give a deterministic reduction under a reasonable number theoretic conjecture. Analogous results hold in any l/sub p/ norm (p/spl ges/1). In proving our NP-hardness result, we give an alternative construction satisfying Ajtai's probabilistic variant of Sauer's lemma, that greatly simplifies Ajtai's original proof.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"276","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 276

Abstract

We show the shortest vector problem in the l/sub 2/ norm is NP-hard (for randomized reductions) to approximate within any constant factor less than /spl radic/2. We also give a deterministic reduction under a reasonable number theoretic conjecture. Analogous results hold in any l/sub p/ norm (p/spl ges/1). In proving our NP-hardness result, we give an alternative construction satisfying Ajtai's probabilistic variant of Sauer's lemma, that greatly simplifies Ajtai's original proof.
晶格中最短的向量很难在某个常数内近似
我们展示了l/sub 2/范数中的最短向量问题是NP-hard(对于随机化约),可以在小于/spl radi2的任何常数因子内近似。我们还在一个合理的数论猜想下给出了一个确定性约简。类似的结果适用于任意l/sub p/范数(p/spl ges/1)。在证明我们的np -硬度结果时,我们给出了一个满足Ajtai的Sauer引理的概率变体的替代结构,极大地简化了Ajtai的原始证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信