Siddeeq Laher, A. Paskaramoorthy, Terence L van Zyl
{"title":"Deep Learning for Financial Time Series Forecast Fusion and Optimal Portfolio Rebalancing","authors":"Siddeeq Laher, A. Paskaramoorthy, Terence L van Zyl","doi":"10.23919/fusion49465.2021.9626945","DOIUrl":null,"url":null,"abstract":"Portfolio selection is complicated by the difficulty of forecasting financial time series and the sensitivity of portfolio optimisers to forecasting errors. To address these issues, a portfolio management model is proposed that makes use of Deep Learning Models for weekly financial time series forecasting of returns. Our model uses a late fusion of an ensemble of forecast models and modifies the standard mean-variance optimiser to account for transaction costs, making it suitable for multi-period trading. Our empirical results show that our portfolio management tool outperforms the equally-weighted portfolio benchmark and the buy-and-hold strategy, using both Long Short-Term Memory and Gated Recurrent Unit forecasts. Although the portfolios are profitable, they are also sub-optimal in terms of their risk to reward ratio. Therefore, greater forecasting accuracy is necessary to construct truly optimal portfolios.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9626945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Portfolio selection is complicated by the difficulty of forecasting financial time series and the sensitivity of portfolio optimisers to forecasting errors. To address these issues, a portfolio management model is proposed that makes use of Deep Learning Models for weekly financial time series forecasting of returns. Our model uses a late fusion of an ensemble of forecast models and modifies the standard mean-variance optimiser to account for transaction costs, making it suitable for multi-period trading. Our empirical results show that our portfolio management tool outperforms the equally-weighted portfolio benchmark and the buy-and-hold strategy, using both Long Short-Term Memory and Gated Recurrent Unit forecasts. Although the portfolios are profitable, they are also sub-optimal in terms of their risk to reward ratio. Therefore, greater forecasting accuracy is necessary to construct truly optimal portfolios.