Explainability Auditing for Intelligent Systems: A Rationale for Multi-Disciplinary Perspectives

Markus Langer, Kevin Baum, K. Hartmann, Stefan Hessel, Timo Speith, Jonas Wahl
{"title":"Explainability Auditing for Intelligent Systems: A Rationale for Multi-Disciplinary Perspectives","authors":"Markus Langer, Kevin Baum, K. Hartmann, Stefan Hessel, Timo Speith, Jonas Wahl","doi":"10.1109/REW53955.2021.00030","DOIUrl":null,"url":null,"abstract":"National and international guidelines for trustworthy artificial intelligence (AI) consider explainability to be a central facet of trustworthy systems. This paper outlines a multi-disciplinary rationale for explainability auditing. Specifically, we propose that explainability auditing can ensure the quality of explainability of systems in applied contexts and can be the basis for certification as a means to communicate whether systems meet certain explainability standards and requirements. Moreover, we emphasize that explainability auditing needs to take a multi-disciplinary perspective, and we provide an overview of four perspectives (technical, psychological, ethical, legal) and their respective benefits with respect to explainability auditing.","PeriodicalId":393646,"journal":{"name":"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REW53955.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

National and international guidelines for trustworthy artificial intelligence (AI) consider explainability to be a central facet of trustworthy systems. This paper outlines a multi-disciplinary rationale for explainability auditing. Specifically, we propose that explainability auditing can ensure the quality of explainability of systems in applied contexts and can be the basis for certification as a means to communicate whether systems meet certain explainability standards and requirements. Moreover, we emphasize that explainability auditing needs to take a multi-disciplinary perspective, and we provide an overview of four perspectives (technical, psychological, ethical, legal) and their respective benefits with respect to explainability auditing.
智能系统的可解释性审计:多学科视角的基本原理
可信赖人工智能(AI)的国家和国际指南认为可解释性是可信赖系统的核心方面。本文概述了可解释性审计的多学科理论基础。具体而言,我们建议可解释性审核可以确保应用环境中体系的可解释性质量,并且可以作为认证的基础,作为沟通体系是否符合某些可解释性标准和要求的手段。此外,我们强调可解释性审计需要采取多学科的视角,并概述了四种视角(技术、心理、道德、法律)及其各自对可解释性审计的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信