Ling Lei, Binqian Huang, Minchao Ye, Futian Yao, Y. Qian
{"title":"Cross-domain residual deep NMF for transfer learning between different hyperspectral image scenes","authors":"Ling Lei, Binqian Huang, Minchao Ye, Futian Yao, Y. Qian","doi":"10.1142/s0219691322500461","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) classification has long been a hot research topic. Most previous researches concentrate on the classification task of a single HSI scene, called single-scene classification. This research focuses on two closely related HSI scenes (called source and target scenes, respectively), and the problem is named cross-scene classification. This paper aims to explore the shared feature sub-space between two HSI scenes. A transfer learning algorithm called cross-domain residual deep nonnegative matrix factorization (CDRDNMF) is proposed. CDRDNMF is a multi-layer architecture consisting of dual-dictionary nonnegative matrix factorization (DDNMF) layers. In each layer, DDNMF is performed on source and target features for domain-invariant feature extraction. Then a data recovery process is completed, and the residual components from the recovery are passed to the next layer after activation. With such a multi-layer architecture, CDRDNMF delivers knowledge transfer and multi-scale feature extraction tasks. The experimental results prove the excellent performance of CDRDNMF on cross-scene classification.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691322500461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral image (HSI) classification has long been a hot research topic. Most previous researches concentrate on the classification task of a single HSI scene, called single-scene classification. This research focuses on two closely related HSI scenes (called source and target scenes, respectively), and the problem is named cross-scene classification. This paper aims to explore the shared feature sub-space between two HSI scenes. A transfer learning algorithm called cross-domain residual deep nonnegative matrix factorization (CDRDNMF) is proposed. CDRDNMF is a multi-layer architecture consisting of dual-dictionary nonnegative matrix factorization (DDNMF) layers. In each layer, DDNMF is performed on source and target features for domain-invariant feature extraction. Then a data recovery process is completed, and the residual components from the recovery are passed to the next layer after activation. With such a multi-layer architecture, CDRDNMF delivers knowledge transfer and multi-scale feature extraction tasks. The experimental results prove the excellent performance of CDRDNMF on cross-scene classification.