Information acquisition strategies for Bayesian network-based decision support

R. Johansson, Christian Mårtenson
{"title":"Information acquisition strategies for Bayesian network-based decision support","authors":"R. Johansson, Christian Mårtenson","doi":"10.1109/ICIF.2010.5712030","DOIUrl":null,"url":null,"abstract":"Determining how to utilize information acquisition resources optimally is a difficult task in the intelligence domain. Nevertheless, an intelligence analyst can expect little or no support for this from software tools today. In this paper, we describe a proof of concept implementation of a resource allocation mechanism for an intelligence analysis support system. The system uses a Bayesian network to structure intelligence requests, and the goal is to minimize the uncertainty of a variable of interest. A number of allocation strategies are discussed and evaluated through simulations.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"33 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5712030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Determining how to utilize information acquisition resources optimally is a difficult task in the intelligence domain. Nevertheless, an intelligence analyst can expect little or no support for this from software tools today. In this paper, we describe a proof of concept implementation of a resource allocation mechanism for an intelligence analysis support system. The system uses a Bayesian network to structure intelligence requests, and the goal is to minimize the uncertainty of a variable of interest. A number of allocation strategies are discussed and evaluated through simulations.
基于贝叶斯网络的决策支持信息获取策略
如何最优地利用信息获取资源是情报领域的一个难题。然而,情报分析人员可以期望很少或根本没有软件工具对此提供支持。在本文中,我们描述了一个智能分析支持系统的资源分配机制的概念验证实现。该系统使用贝叶斯网络来构建智能请求,目标是最小化感兴趣变量的不确定性。通过仿真,讨论并评价了多种分配策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信