Entities Identification on the Deep Web Using Neural Network

Baohua Qiang, Chunming Wu, Long Zhang
{"title":"Entities Identification on the Deep Web Using Neural Network","authors":"Baohua Qiang, Chunming Wu, Long Zhang","doi":"10.1109/CYBERC.2010.93","DOIUrl":null,"url":null,"abstract":"With the rapid developments and extensive applications of internet, a large number of duplicated entities on the Web, especially on the Deep Web, require to be eliminated and integrated effectively. So identifying the corresponding entities on the Deep Web is critical. Due to the query interface on the HTML page represents the schema of the Web database, we firstly try to obtain the schema of the entities on the Deep Web by extracting the schema of the query interface in order to improve the accuracy for entities matching. Then an entities identification approach on the Deep Web using neural network is proposed. The experimental results show the effectiveness of our proposed algorithm.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the rapid developments and extensive applications of internet, a large number of duplicated entities on the Web, especially on the Deep Web, require to be eliminated and integrated effectively. So identifying the corresponding entities on the Deep Web is critical. Due to the query interface on the HTML page represents the schema of the Web database, we firstly try to obtain the schema of the entities on the Deep Web by extracting the schema of the query interface in order to improve the accuracy for entities matching. Then an entities identification approach on the Deep Web using neural network is proposed. The experimental results show the effectiveness of our proposed algorithm.
基于神经网络的深度网络实体识别
随着互联网的快速发展和广泛应用,需要消除和有效整合网络上大量的重复实体,特别是深网中的重复实体。因此,识别深层网络上相应的实体是至关重要的。由于HTML页面上的查询接口代表了Web数据库的模式,我们首先尝试通过提取查询接口的模式来获得Deep Web上实体的模式,以提高实体匹配的准确性。然后提出了一种基于神经网络的深度网络实体识别方法。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信