Face analysis in video: face detection and tracking with pose estimation

Hazar Mliki, Mohamed Hammami
{"title":"Face analysis in video: face detection and tracking with pose estimation","authors":"Hazar Mliki, Mohamed Hammami","doi":"10.1504/IJBM.2018.10012738","DOIUrl":null,"url":null,"abstract":"We introduced a full automatic approach to achieve face detection and tracking with pose estimation in video sequences. The proposed approach consists of three modules: face detection module, face tracking module and face pose estimation module. A combination between detection and tracking modules was performed to overcome the different challenging problems that might occur while detecting or tracking faces. Afterward face pose estimation module was applied to select the best camera capture which is closest to the frontal face view for better face recognition task. The performance of these modules was evaluated with an experimental study which has proven the robustness of the proposed approach for a face analysis in video.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2018.10012738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduced a full automatic approach to achieve face detection and tracking with pose estimation in video sequences. The proposed approach consists of three modules: face detection module, face tracking module and face pose estimation module. A combination between detection and tracking modules was performed to overcome the different challenging problems that might occur while detecting or tracking faces. Afterward face pose estimation module was applied to select the best camera capture which is closest to the frontal face view for better face recognition task. The performance of these modules was evaluated with an experimental study which has proven the robustness of the proposed approach for a face analysis in video.
视频中的人脸分析:基于姿态估计的人脸检测与跟踪
介绍了一种利用姿态估计实现视频序列人脸检测和跟踪的全自动方法。该方法包括三个模块:人脸检测模块、人脸跟踪模块和人脸姿态估计模块。在检测和跟踪模块之间进行了组合,以克服在检测或跟踪人脸时可能出现的各种具有挑战性的问题。然后应用人脸姿态估计模块,选择最接近正面人脸视图的最佳摄像头拍摄,以更好地完成人脸识别任务。通过实验研究对这些模块的性能进行了评估,证明了所提出的方法在视频人脸分析中的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信