MDSNet: a lightweight network for real-time vision task on the unmanned mobile robot

Yingpeng Dai, Junzheng Wang, Jing Li
{"title":"MDSNet: a lightweight network for real-time vision task on the unmanned mobile robot","authors":"Yingpeng Dai, Junzheng Wang, Jing Li","doi":"10.1109/ISoIRS57349.2022.00013","DOIUrl":null,"url":null,"abstract":"To makes a trade-off between accuracy and inference speed for semantic segmentation, Multi-Scale Depthwise Separation network (MDSNet) is designed to be effective both in terms of accuracy and inference speed. This network extract local information and contextual information jointly and has feature maps with high spatial resolution. Compared with state-of-the-art algorithms, MDSNet achieves 66.57 MIoU on Camvid with only 0.5M parameters and 79.4 FPS inference speed on a single GTX 1070Ti card. Besides, MDS is deployed on the unmanned platform to test performance under different conditions. The results show that the proposed algorithm performs well on real-time applications in the real world.","PeriodicalId":405065,"journal":{"name":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISoIRS57349.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To makes a trade-off between accuracy and inference speed for semantic segmentation, Multi-Scale Depthwise Separation network (MDSNet) is designed to be effective both in terms of accuracy and inference speed. This network extract local information and contextual information jointly and has feature maps with high spatial resolution. Compared with state-of-the-art algorithms, MDSNet achieves 66.57 MIoU on Camvid with only 0.5M parameters and 79.4 FPS inference speed on a single GTX 1070Ti card. Besides, MDS is deployed on the unmanned platform to test performance under different conditions. The results show that the proposed algorithm performs well on real-time applications in the real world.
MDSNet:用于无人移动机器人实时视觉任务的轻量级网络
为了在语义分割的准确性和推理速度之间进行权衡,设计了多尺度深度分离网络(MDSNet),使其在准确性和推理速度方面都很有效。该网络同时提取局部信息和上下文信息,具有高空间分辨率的特征图。与最先进的算法相比,MDSNet在Camvid上实现了66.57 MIoU,仅使用0.5M参数,在单个GTX 1070Ti卡上实现了79.4 FPS的推理速度。此外,将MDS部署在无人平台上,测试不同条件下的性能。结果表明,该算法在实际应用中具有良好的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信