How Well Do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis

Yong Guo, M. Biczak, A. Varbanescu, A. Iosup, Claudio Martella, Theodore L. Willke
{"title":"How Well Do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis","authors":"Yong Guo, M. Biczak, A. Varbanescu, A. Iosup, Claudio Martella, Theodore L. Willke","doi":"10.1109/IPDPS.2014.49","DOIUrl":null,"url":null,"abstract":"Graph-processing platforms are increasingly used in a variety of domains. Although both industry and academia are developing and tuning graph-processing algorithms and platforms, the performance of graph-processing platforms has never been explored or compared in-depth. Thus, users face the daunting challenge of selecting an appropriate platform for their specific application. To alleviate this challenge, we propose an empirical method for benchmarking graph-processing platforms. We define a comprehensive process, and a selection of representative metrics, datasets, and algorithmic classes. We implement a benchmarking suite of five classes of algorithms and seven diverse graphs. Our suite reports on basic (user-lever) performance, resource utilization, scalability, and various overhead. We use our benchmarking suite to analyze and compare six platforms. We gain valuable insights for each platform and present the first comprehensive comparison of graph-processing platforms.","PeriodicalId":309291,"journal":{"name":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 28th International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2014.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

Graph-processing platforms are increasingly used in a variety of domains. Although both industry and academia are developing and tuning graph-processing algorithms and platforms, the performance of graph-processing platforms has never been explored or compared in-depth. Thus, users face the daunting challenge of selecting an appropriate platform for their specific application. To alleviate this challenge, we propose an empirical method for benchmarking graph-processing platforms. We define a comprehensive process, and a selection of representative metrics, datasets, and algorithmic classes. We implement a benchmarking suite of five classes of algorithms and seven diverse graphs. Our suite reports on basic (user-lever) performance, resource utilization, scalability, and various overhead. We use our benchmarking suite to analyze and compare six platforms. We gain valuable insights for each platform and present the first comprehensive comparison of graph-processing platforms.
图形处理平台的性能如何?实证绩效评价与分析
图形处理平台越来越多地应用于各种领域。尽管业界和学术界都在开发和优化图形处理算法和平台,但图形处理平台的性能从未被深入探索或比较。因此,用户面临着为其特定应用程序选择合适平台的艰巨挑战。为了缓解这一挑战,我们提出了一种对图形处理平台进行基准测试的经验方法。我们定义了一个全面的过程,并选择了代表性的指标,数据集和算法类。我们实现了一个由五类算法和七个不同图组成的基准测试套件。我们的套件报告基本(用户级)性能、资源利用率、可伸缩性和各种开销。我们使用我们的基准测试套件来分析和比较六个平台。我们对每个平台都获得了有价值的见解,并首次对图形处理平台进行了全面比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信