Flexible & planar implantable resonant coils for wireless power transfer using Inkjet masking technique

Ahmad Usman, J. Bito, M. Tentzeris
{"title":"Flexible & planar implantable resonant coils for wireless power transfer using Inkjet masking technique","authors":"Ahmad Usman, J. Bito, M. Tentzeris","doi":"10.1109/BIOWIRELESS.2016.7445573","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design, fabrication and characterization of implantable coils, operating at 13.56 MHz ISM band for biomedical applications. Rogers RO 4003C substrate was used for the prototype of the implantable coil while Rogers RO 3850 flexible substrate was used for the external transmitter coil. The Inkjet masking technique was used for the patterning the planar coil on the flexible substrate. Wireless power transfer efficiency measurements were conducted in free space and water environments, varying the operating distance between the prototype coils from 5mm to 20mm, featuring transfer efficiencies upto 55% and 35%, respectively.","PeriodicalId":154090,"journal":{"name":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2016.7445573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present the design, fabrication and characterization of implantable coils, operating at 13.56 MHz ISM band for biomedical applications. Rogers RO 4003C substrate was used for the prototype of the implantable coil while Rogers RO 3850 flexible substrate was used for the external transmitter coil. The Inkjet masking technique was used for the patterning the planar coil on the flexible substrate. Wireless power transfer efficiency measurements were conducted in free space and water environments, varying the operating distance between the prototype coils from 5mm to 20mm, featuring transfer efficiencies upto 55% and 35%, respectively.
采用喷墨掩蔽技术的无线电力传输柔性平面植入式谐振线圈
在本文中,我们介绍了可植入线圈的设计,制造和表征,工作在13.56 MHz ISM波段用于生物医学应用。植入式线圈的原型采用Rogers RO 4003C基板,外部发射机线圈采用Rogers RO 3850柔性基板。采用喷墨掩模技术在柔性基板上对平面线圈进行了图形化处理。无线电力传输效率测试在自由空间和水环境下进行,将原型线圈之间的工作距离从5mm到20mm不等,传输效率分别高达55%和35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信