{"title":"Dynamic Local Geometry Capture in 3D Point Cloud Classification","authors":"Shivanand Venkanna Sheshappanavar, C. Kambhamettu","doi":"10.1109/MIPR51284.2021.00031","DOIUrl":null,"url":null,"abstract":"With the advent of PointNet, the popularity of deep neural networks has increased in point cloud analysis. PointNet’s successor, PointNet++, partitions the input point cloud and recursively applies PointNet to capture local geometry. PointNet++ model uses ball querying for local geometry capture in its set abstraction layers. Several models based on single scale grouping of PointNet++ continue to use ball querying with a fixed-radius ball. Due to its uniform scale in all directions, a ball lacks orientation and is ineffective in capturing complex local neighborhoods. Few recent models replace a fixed-sized ball with a fixed-sized ellipsoid or a fixed-sized cuboid to capture local neighborhoods. However, these methods are not still fully effective in capturing varying geometry proportions from different local neighborhoods on the object surface. We propose a novel technique of dynamically oriented and scaled ellipsoid based on unique local information to capture the local geometry better. We also propose ReducedPointNet++, a single set abstraction based single scale grouping model. Our model, along with dynamically oriented and scaled ellipsoid querying, achieves 92.1% classification accuracy on the ModelNet40 dataset. We achieve state-of-the-art 3D classification results on all six variants of the real-world ScanObjectNN dataset with an accuracy of 82.0% on the most challenging variant.","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"383 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
With the advent of PointNet, the popularity of deep neural networks has increased in point cloud analysis. PointNet’s successor, PointNet++, partitions the input point cloud and recursively applies PointNet to capture local geometry. PointNet++ model uses ball querying for local geometry capture in its set abstraction layers. Several models based on single scale grouping of PointNet++ continue to use ball querying with a fixed-radius ball. Due to its uniform scale in all directions, a ball lacks orientation and is ineffective in capturing complex local neighborhoods. Few recent models replace a fixed-sized ball with a fixed-sized ellipsoid or a fixed-sized cuboid to capture local neighborhoods. However, these methods are not still fully effective in capturing varying geometry proportions from different local neighborhoods on the object surface. We propose a novel technique of dynamically oriented and scaled ellipsoid based on unique local information to capture the local geometry better. We also propose ReducedPointNet++, a single set abstraction based single scale grouping model. Our model, along with dynamically oriented and scaled ellipsoid querying, achieves 92.1% classification accuracy on the ModelNet40 dataset. We achieve state-of-the-art 3D classification results on all six variants of the real-world ScanObjectNN dataset with an accuracy of 82.0% on the most challenging variant.