Design of an artificial neural network and feature extraction to identify arrhythmias from ECG

V. C. C. Roza, A. M. Almeida, O. Postolache
{"title":"Design of an artificial neural network and feature extraction to identify arrhythmias from ECG","authors":"V. C. C. Roza, A. M. Almeida, O. Postolache","doi":"10.1109/MeMeA.2017.7985908","DOIUrl":null,"url":null,"abstract":"This paper presents a design of an artificial neural network (ANN) and feature extraction methods to identify two types of arrhythmias in datasets obtained through electrocardiography (ECG) signals, namely arrhythmia dataset (AD) and supraventricular arrhythmia dataset (SAD). No special ANN toolkit was used; instead, each neuron and necessary calculus were modeled and individually programmed. Thus, four temporal-based features are used: heart rate (HR), R-peaks root mean square (R-RMS), RR-peaks variance (RR-VAR), and QSR-complex standard deviation (QSR-SD). The network architecture presents four neurons in the input layer, eight in hidden layer and an output layer with two neurons. The proposed classification method uses the MIT-BIH Dataset (Massachusetts Institute of Technology-Beth Israel Hospital) for training, validation and execution or test phases. Preliminary results show the high efficiency of the proposed ANN design and its classification method, reaching accuracies between 98.76% and 98.91%, when in the identification of NSRD and arrhythmic ECG; and accuracies of 86.37% (AD) and 76.35% (SAD), when analyzing only classifications between both arrhythmias.","PeriodicalId":235051,"journal":{"name":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2017.7985908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a design of an artificial neural network (ANN) and feature extraction methods to identify two types of arrhythmias in datasets obtained through electrocardiography (ECG) signals, namely arrhythmia dataset (AD) and supraventricular arrhythmia dataset (SAD). No special ANN toolkit was used; instead, each neuron and necessary calculus were modeled and individually programmed. Thus, four temporal-based features are used: heart rate (HR), R-peaks root mean square (R-RMS), RR-peaks variance (RR-VAR), and QSR-complex standard deviation (QSR-SD). The network architecture presents four neurons in the input layer, eight in hidden layer and an output layer with two neurons. The proposed classification method uses the MIT-BIH Dataset (Massachusetts Institute of Technology-Beth Israel Hospital) for training, validation and execution or test phases. Preliminary results show the high efficiency of the proposed ANN design and its classification method, reaching accuracies between 98.76% and 98.91%, when in the identification of NSRD and arrhythmic ECG; and accuracies of 86.37% (AD) and 76.35% (SAD), when analyzing only classifications between both arrhythmias.
心律失常的人工神经网络设计与特征提取
本文设计了一种人工神经网络(ANN)和特征提取方法,用于识别通过心电图(ECG)信号获得的数据集中的两种类型的心律失常,即心律失常数据集(AD)和室上心律失常数据集(SAD)。没有使用特殊的人工神经网络工具包;相反,每个神经元和必要的演算都被建模并单独编程。因此,使用了四个基于时间的特征:心率(HR)、r -峰均方根(R-RMS)、r -峰方差(r - var)和qsr -复合标准差(QSR-SD)。该网络结构为输入层4个神经元,隐藏层8个神经元,输出层2个神经元。提出的分类方法使用MIT-BIH数据集(麻省理工学院-贝斯以色列医院)进行训练、验证和执行或测试阶段。初步结果表明,所提出的人工神经网络设计及其分类方法具有较高的效率,在识别非心性心律失常和非心性心律失常时,准确率达到98.76% ~ 98.91%;仅分析两种心律失常的分类时,AD和SAD的准确率分别为86.37%和76.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信