Discrete conformal geometry of polyhedral surfaces and its convergence

F. Luo, Jian Sun, Tianqi Wu
{"title":"Discrete conformal geometry of polyhedral surfaces and its convergence","authors":"F. Luo, Jian Sun, Tianqi Wu","doi":"10.2140/gt.2022.26.937","DOIUrl":null,"url":null,"abstract":"A BSTRACT . The paper proves a result on the convergence of discrete conformal maps to the Riemann mappings for Jordan domains. It is a counterpart of Rodin-Sullivan’s theorem on convergence of circle packing mappings to the Riemann mapping in the new setting of discrete conformality. The proof follows the same strategy that Rodin-Sullivan used by establishing a rigidity result for regular hexagonal triangulations of the plane and estimating the quasiconformal constants associated to the discrete conformal maps.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

A BSTRACT . The paper proves a result on the convergence of discrete conformal maps to the Riemann mappings for Jordan domains. It is a counterpart of Rodin-Sullivan’s theorem on convergence of circle packing mappings to the Riemann mapping in the new setting of discrete conformality. The proof follows the same strategy that Rodin-Sullivan used by establishing a rigidity result for regular hexagonal triangulations of the plane and estimating the quasiconformal constants associated to the discrete conformal maps.
多面体曲面的离散共形几何及其收敛性
摘要。本文证明了Jordan域上离散共形映射收敛于Riemann映射的一个结果。它是Rodin-Sullivan关于圆填充映射的收敛性定理在新的离散共形情况下对Riemann映射的对应。证明遵循了Rodin-Sullivan使用的相同策略,即为平面的正六边形三角形建立刚性结果并估计与离散共形映射相关的拟共形常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信