Two-dimensional memory nonlinearities and their application to blind deconvolution problems

Y. Chen, C. Nikias
{"title":"Two-dimensional memory nonlinearities and their application to blind deconvolution problems","authors":"Y. Chen, C. Nikias","doi":"10.1109/SSAP.1992.246812","DOIUrl":null,"url":null,"abstract":"Blind deconvolution for a nonminimum phase linear time invariant system is possible only if some nonlinear estimates of the input or the higher-order statistics of the output are employed. When the convolutional noise is colored, the optimum estimates becomes memory nonlinear functions of the observations. Closed form solutions for the two-dimensional memory nonlinear MAP estimates depending on only the current observation and the immediately preceding one are derived for the following a priori probability density functions: (1) uniform, (2) Laplace and (3) exponential.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Blind deconvolution for a nonminimum phase linear time invariant system is possible only if some nonlinear estimates of the input or the higher-order statistics of the output are employed. When the convolutional noise is colored, the optimum estimates becomes memory nonlinear functions of the observations. Closed form solutions for the two-dimensional memory nonlinear MAP estimates depending on only the current observation and the immediately preceding one are derived for the following a priori probability density functions: (1) uniform, (2) Laplace and (3) exponential.<>
二维记忆非线性及其在盲反卷积问题中的应用
对于非最小相位线性时不变系统,只有在使用输入的非线性估计或输出的高阶统计量时,才能实现盲反卷积。当卷积噪声被着色后,最优估计成为观测值的记忆非线性函数。对于仅依赖于当前观测值和前一观测值的二维记忆非线性MAP估计,导出了以下先验概率密度函数的封闭形式解:(1)均匀,(2)拉普拉斯和(3)指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信