Loop unrolling in multi-pipeline ASIP design

Rajitha Navarathna, S. Radhakrishnan, R. Ragel
{"title":"Loop unrolling in multi-pipeline ASIP design","authors":"Rajitha Navarathna, S. Radhakrishnan, R. Ragel","doi":"10.1109/ICIINFS.2009.5429845","DOIUrl":null,"url":null,"abstract":"Application Specific Instruction-set Processor (ASIP) is one of the popular processor design techniques for embedded systems which allow customizability in processor design without overly hindering design flexibility. Multi-pipeline ASIPs were proposed to improve the performance of such systems by compromising between speed and processor area. One of the problems in the multi-pipeline design is the limited inherent instruction level parallelism (ILP) available in applications. The ILP of application programs can be improved via a compiler optimization technique known as loop unrolling. In this paper, we present the impact of loop unrolling on the performance (speed) of multi-pipeline ASIPs. The improvement in speed averages around 15% for a number of benchmark applications with the maximum improvement of around 30%. In addition, we report the variation of performance against the loop unrolling factor - the amount of unrolling performed on an application.","PeriodicalId":117199,"journal":{"name":"2009 International Conference on Industrial and Information Systems (ICIIS)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2009.5429845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Application Specific Instruction-set Processor (ASIP) is one of the popular processor design techniques for embedded systems which allow customizability in processor design without overly hindering design flexibility. Multi-pipeline ASIPs were proposed to improve the performance of such systems by compromising between speed and processor area. One of the problems in the multi-pipeline design is the limited inherent instruction level parallelism (ILP) available in applications. The ILP of application programs can be improved via a compiler optimization technique known as loop unrolling. In this paper, we present the impact of loop unrolling on the performance (speed) of multi-pipeline ASIPs. The improvement in speed averages around 15% for a number of benchmark applications with the maximum improvement of around 30%. In addition, we report the variation of performance against the loop unrolling factor - the amount of unrolling performed on an application.
多管道ASIP设计中的循环展开
专用指令集处理器(ASIP)是一种流行的嵌入式系统处理器设计技术,它允许处理器设计的可定制性,而不会过度阻碍设计的灵活性。提出了多管道api,通过在速度和处理器面积之间做出妥协来提高系统的性能。多管道设计中存在的一个问题是应用程序中固有的指令级并行性(ILP)有限。应用程序的ILP可以通过称为循环展开的编译器优化技术来改进。在本文中,我们提出了环路展开对多管道api性能(速度)的影响。在许多基准测试应用程序中,速度的平均提高约为15%,最大提高约为30%。此外,我们根据循环展开因子(在应用程序上执行的展开次数)报告性能的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信